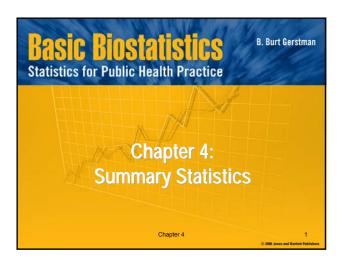
Chapter 4



In Chapter 4:

The prior chapter used graphs to look at distributional shape, location, and spread.

This chapter uses numerical **summaries** of the same distributional features.

Chapter 4

Summary Statistics

- Central location statistics
 - -Mean
 - -Median
 - -Mode
- Spread statistics
 - -Range
 - Interquartile range (IQR)
 - -Variance and standard deviation
- Shape statistics exist but are seldom used in practice and are not covered

Notation

- n = sample size
- X = the variable (e.g., ages of subjects)
- $x_i \equiv$ the value of individual *i* for variable *X*
- $\Sigma \equiv$ sum all values (capital sigma)
- Example (n = 10):

21 42 5 11 30 50 28 27 24 52 Let X = AGE

 x_1 = 21, x_2 = 42, ..., x_{10} = 52

 $\Sigma x_i = x_1 + x_2 + \dots + x_{10} = 21 + 42 + \dots + 52 = 290$ Chapter 4

§4.1: Central Location: Sample Mean

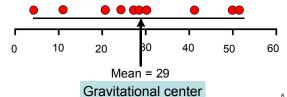
- · Arithmetic average
- · Traditional measure of central location
- Sum the values and divide by n
- · Notation: "x-bar"

$$\overline{x} = \frac{1}{n} (x_1 + x_2 + \dots + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

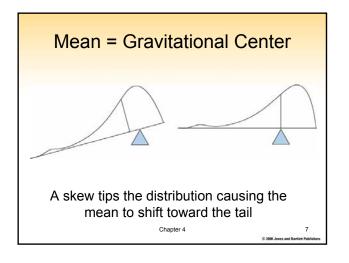
Chapter 4

Example: Sample Mean From data: n = 10 with $\Sigma x_i = 290$

$$\bar{x} = \frac{1}{n} \sum x_i = \frac{1}{10} (290) = 29.0$$



Chapter 4 9/22/2009



Uses of the Sample Mean

- Predicts value of an observation drawn at random from the sample
- Predicts value of an observation drawn at random from the population
- Predicts the population mean



Chapter 4

© 2008 James and Barriett Pub

Population Mean

$$\mu = \frac{\sum x_i}{N} = \frac{1}{N} \sum x_i$$

- Same operation as sample mean except based on entire population (N ≡ population size)
- Important conceptually, but not readily available and seldom used

Chapter 4

2008 James and Bartlett Publishe

§4.2 Central Location: Median

The median is the value with a depth of (n+1)/2

When *n* is even, average the two middle values

For the 10 values below, the median has depth (10+1)/2 = 5.5, placing it between 27 and 28. Average these two values: median = 27.5

More Examples

- Example A: 2 4 6
 Median = 4
- Example B: 2 4 6 8 Median = 5 (average of 4 and 6)
- Example C: 6 2 4
 Median ≠ 2
 (Values must be ordered first)

Chapter 4

© 2008 James and Barriett Publisher

The Median is Robust

The median is relatively resistant to skews and outlier; it is *robust*.

This data set has x-bar = 1636:

1362 1439 1460 **1614** 1666 1792 1867

Same data set with a data entry error "outlier" highlighted. This data has x-bar = 2743:

1362 1439 1460 **1614** 1666 1792 **9867**

The median is 1614 in both instances,

Chapter 4

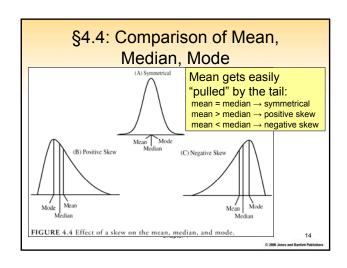
© 2008 James and Barriert Publishe

Chapter 4 9/22/2009

§4.3: Mode

- Most frequent value in the dataset
- This data set has mode = 7 {4, 7, 7, 7, 8, 8, 9}
- This data set has no mode {4, 6, 7, 8} (each point appears once)
- The mode is useful only in large data sets with repeating values

Chapter 4



Spread

- Spread = extent to which data vary
- Data at both sites in data to right have x-bar ≈ 36
- Site 1 exhibits greater spread (visual inspection)
- How can we quantify spread?

Site 1	Site 2	
42 2		
8 2		
2 3	234	
86 3	6689	
2 4	0	
4	i l	
5	i l	
5	l l	
6	I	
8 6	1	
×1	0	
1 "0",		
15 © 2008 Janes and Barrior Publishers		
×10 particulates in air (μg/m³)		

Spread: Range

- Range = maximum minimum
- Illustrative example:
 Site 1 range = 68 22 = 46
 Site 2 range = 40 32 = 8
- The sample range is not a good measure of spread: tends to underestimate population range
- Always supplement the range with at least one addition measure of spread

42 | 2 | 8 | 2 | 2 | 3 | 234 86 | 3 | 6689 2 | 4 | 0 | 4 | | 5 | | 5 | | 6 | | 8 | 6 | | ×10

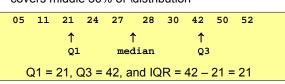
Site 1| |Site 2

Chapter 4 16

Spread: Interquartile Range

Chapter 4

- Quartile 1 (Q1): marks bottom quarter of data
 = middle of the lower half of the data set
- Quartile 3 (Q3): marks top quarter of data
 middle of the top half of data set
- Interquartile Range (IQR) = Q3 Q1 covers middle 50% of \distribution



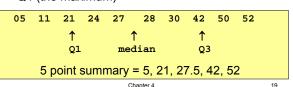
Chapter 4 17
© 2006 James and Barrier Publisher

Basic Biostatistics 3

Chapter 4

Five-Point Summary

- Q0 (the minimum)
- Q1 (25th percentile)
- Q2 (median)
- Q3 (75th percentile)
- · Q4 (the maximum)



§4.6 Boxplots

- Draw box from Q1 (upper hinge) to Q3 (lower hinge); draw line for median.
- 2. Calculate fences as follows:

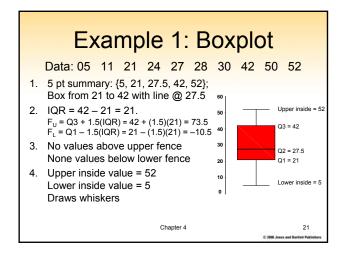
 $Fence_{Lower} = Q1 - 1.5(IQR)$

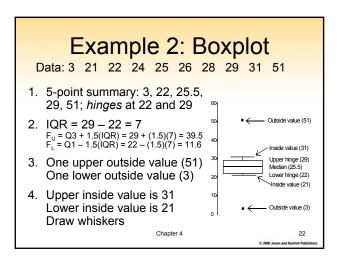
 $Fence_{Upper} = Q3 + 1.5(IQR)$

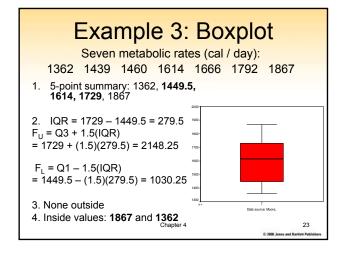
Do not draw fences

- 3. Determine if any values lie outside the fences (outside values). If so, plot separately
- Determine values inside the fences (inside values)
 Draw whisker from Q3 to upper inside value.
 Draw whisker from Q1 to lower inside value

Chapter 4 20

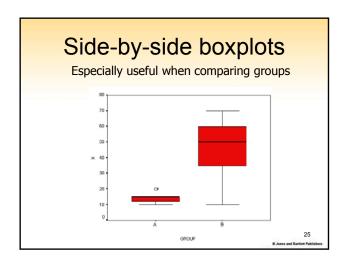


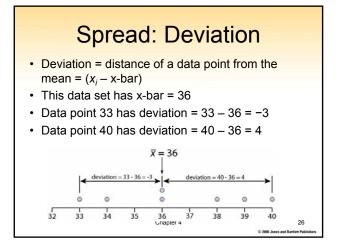




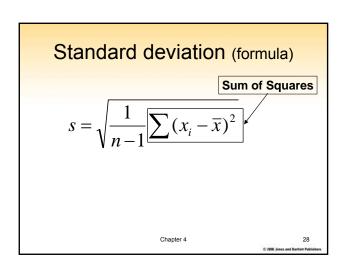
Doxplots: Interpretation Location Position of median Position of box Spread Hinge-spread (IQR) Whisker-to-whisker spread Shape: symmetry? skew? length of tails? outside values?

Chapter 4 9/22/2009

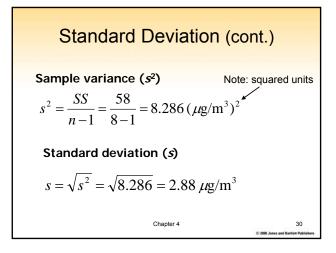




Variance and Standard Deviation Deviation Deviation = $x_i - \overline{x}$ Sum of squared deviations = $SS = \sum (x_i - \overline{x})^2$ Sample variance = $s^2 = \frac{SS}{n-1}$ Sample standard deviation = $s = \sqrt{s^2}$



Standard Deviation		
Observation	Deviations	Sq. deviations
x_i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$
36	36 – 36 = 0	$0^2 = 0$
38	38 - 36 = 2	$2^2 = 4$
39	39 - 36 = 3	$3^2 = 9$
40	40 - 36 = 4	$4^2 = 16$
36	36 - 36 = 0	$0^2 = 0$
34	34 - 36 = -2	$-2^2 = 4$
33	33 - 36 = -3	$-3^2 = 9$
32	32 - 36 = -4	$-4^2 = 16$
SUMS ⇒	0 [Always]	SS = 58
	Chapter 4	© 2008 Janes and Bartlett Pa



Chapter 4 9/22/2009

Interpretation of Standard Deviation

- · Most common measure spread
- Sample standard deviation s is estimator of population standard deviation σ
- 68-95-99.7 rule
- · Chebychev's rule

Chapter 4

68-95-99.7 Rule Normal Distributions Only

- 68% of data within μ ± σ
- 95% of data within $\mu \pm 2\sigma$
- 99.7% of data within $\mu \pm 3\sigma$
- Example: Normal distribution with $\mu = 30$ and $\sigma = 10$ has:

68% of values in $30 \pm 10 = 20$ to 40 95% in 30 \pm (2)(10) = 30 \pm 20 = 10 to 50 99.7% in 30 \pm (3)(10) = 30 \pm 30 = 0 to 60

Chebychev's Rule (All Distributions)

- At least 75% of the values within $\mu \pm 2\sigma$
- Example:

A distribution with μ = 30 and σ = 10 has at least 75% of the values within $30 \pm (2)(10)$

 $= 30 \pm 20$

= 10 to 50

Chapter 4

Rounding

- · There is no single rule for rounding. There are some guidelines.
- The number of significant digits should reflect the precision of the measurement
- You are safe when you carry at least four significant digits during calculations
- Use a reliable reporting guidelines (e.g., APA Publication Manual)
- The round as final step.
- ALWAYS use judgment and "Be kind to your reader'

Chapter 4

Choosing Summary Statistics

- Always report a measure of central location, a measure of spread, and the sample size
- Symmetrical distributions ⇒ report the mean and standard deviation
- Asymmetrical distributions ⇒ report the 5point summaries (or median and IQR)

Chapter 4

Software and Calculators Use 'em SPSS 15.0 for Windows Chapter 4

Basic Biostatistics 6