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Linear Algebra Review

Notation: vectors

Vectors are denoted by boldface lowercase letters (such as a,b).

They are always assumed to be in column form.

To indicate their dimensions, we use notation like a ∈ Rn.

The ith element of a is written as ai or a(i).

We denote the constant vector of one as 1 (with its dimension implied by the
context).
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Notation: matrices

Matrices are denoted by boldface uppercase letters (such as A,B).

Similarly, we write A ∈ Rm×n to indicate its size.

The (i, j) entry of A is denoted by aij or A(i, j).

The ith row of A is denoted by A(i, :) while its columns are written as A(:, j),
as in MATLAB.

We use I to denote the identity matrix (with its dimension implied by the context).
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Matrix multiplication
Let A ∈ Rm×n and B ∈ Rn×k. Their product is an m× k matrix

C = (cij), cij =
n∑

`=1
ai`b`j = A(i, :) ·B(:, j).

=C A B
b
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It is possible to obtain one full row (or column) of C at a time via matrix-vector
multiplication:

C(i, :) = A(i, :) ·B, C(:, j) = A ·B(:, j)

=C A B =C A B
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The full matrix C can be written as a sum of rank-1 matrices:

C =
n∑

`=1
A(:, `) ·B(`, :).

=C A B
b b b

b

b
b
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When one of the matrices is a diagonal matrix, we have the following rules:

A︸︷︷︸
diagonal

B =

a1
. . .

an


B(1, :)

...
B(n, :)

 =

a1B(1, :)
...

anB(n, :)



A B︸︷︷︸
diagonal

= [A(:, 1) . . .A(:, n)]

b1
. . .

bn


= [b1A(:, 1) . . . bnA(:, n)]
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Finally, below are some identities involving the vector 1 ∈ Rn:

11T =

1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 ,

1T 1 = n,

A1 =
∑

j

A(:, j), (vector of row sums)

1T A =
∑

i

A(i, :), (horizontal vector of column sums)

1T A1 =
∑

i

∑
j

A(i, j) (total sum of all entries)
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Example 0.1. Let

A =

 3 0 0
5 1 −1
−2 2 4

 , B =

1 0
0 −1
2 3

 , Λ1 =

1
0
−1

 , Λ2 =
(

2
−3

)
.

Find the products AB,Λ1B,BΛ2,1T B,B1 and verify the above rules.
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The entrywise product
Another way to multiply two matrices of the same size, say A,B ∈ Rm×n, is
through the Hadamard product, also called the entrywise product:

C = A ◦B ∈ Rm×n, with cij = aijbij .

For example, (
0 2 −3
−1 0 −4

)
◦

(
1 0 −3
2 1 −1

)
=
(

0 0 9
−2 0 4

)
.

An important application of the entrywise product is in computing the product of
a diagonal matrix and a rectangular matrix in software.
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Let A = diag(a1, . . . , an) ∈ Rn×n and B ∈ Rn×k. Define also a vector
a = (a1, . . . , an)T ∈ Rn, which represents the diagonal of A.

Then
AB = [a . . .a]︸ ︷︷ ︸

k copies

◦B.

The former takes O(n2k) operations, while the latter takes only O(nk) operations,
which is one magnitude faster.

= ◦B B
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Matrix rank

Let A ∈ Rm×n. The maximal number of linearly independent rows (or columns)
is called the rank of A, and often denoted as rank(A).

It is known that rank(A) ≤ min(m,n).

A square matrix A ∈ Rn×n is said to have full rank if rank(A) = n; otherwise,
it is said to be rank deficient.
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Matrix trace

The trace of a square matrix A ∈ Rn×n is defined as the sum of the entries in
its diagonal:

trace(A) =
∑

i

aii.

If A is an m× n matrix and B is an n×m matrix, then

trace(AB) = trace(BA).
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Matrix determinant

The matrix determinant is a rule1 to evaluate square matrices to numbers:

det : A ∈ Rn×n 7→ det(A) ∈ R.

The matrix A ∈ Rn×n is said to be invertible or nonsingular if det(A) 6= 0, which
can be shown to be equivalent to being of full rank (i.e., rank(A) = n).

An important property of matrix determinant is for two square matrices of the
same size A,B ∈ Rn×n,

det(AB) = det(A) det(B).
1https://en.wikipedia.org/wiki/Determinant
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Example 0.2. For the matrix

A =

 3 0 0
5 1 −1
−2 2 4

 ,

find its rank, trace and determinant.
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Eigenvalues and eigenvectors
Let A ∈ Rn×n. The characteristic polynomial of A is

p(λ) = det(A− λI).

The roots of the characteristic equation p(λ) = 0 are called eigenvalues of A.

For a specific eigenvalue λi, any nonzero vector vi satisfying

(A− λiI)vi = 0

or equivalently,
Avi = λivi

is called an eigenvector of A (associated to the eigenvalue λi).
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All eigenvectors associated to λi span a linear subspace, called the eigenspace:

E(λi) = {v ∈ Rn : (A− λiI)v = 0}.

The dimension gi of E(λi) is called the geometric multiplicity of λi, while the
degree ai of the factor (λ− λi)ai in p(λ) is called the algebraic multiplicity of
λi.
Note that we must have

∑
ai = n and for all i, 1 ≤ gi ≤ ai.

Example 0.3. For the matrix A =

 3 0 0
5 1 −1
−2 2 4

 , find its eigenvalues and

their multiplicities, as well as associated eigenvectors.

Answer. The eigenvalues are λ1 = 3, λ2 = 2 with a1 = 2, a2 = 1 and g1 = g2 = 1.
The corresponding eigenvectors are v1 = (0, 1,−2)T ,v2 = (0, 1,−1)T .
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The following theorem indicates that the trace and determinant of a square matrix
can both be computed from the eigenvalues of the matrix.

Theorem 0.1. Let A be a real square matrix whose eigenvalues are λ1, . . . , λn

(with repetitions). Then

det(A) =
n∏

i=1
λi and trace(A) =

n∑
i=1

λi.

Example 0.4. For the matrix A defined previously, verify the identities in the
above theorem.
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Diagonalizability of square matrices
Definition 0.1. A square matrix A is diagonalizable if it is similar to a diagonal
matrix, i.e., there exist an invertible matrix P and a diagonal matrix Λ such that

A = PΛP−1, or equivalently, P−1AP = Λ.

Remark. If we write P = (p1, . . . ,pn) and Λ = diag(λ1, . . . , λn), then the
above equation can be rewritten as

AP = PΛ, or in columns, Api = λipi, 1 ≤ i ≤ n.

This shows that the λi are the eigenvalues of A and pi the associated eigenvectors.
Thus, the above factorization is called the eigenvalue decomposition of A, or
sometimes the spectral decomposition of A.
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Example 0.5. The matrix

A =
(

0 1
3 2

)
is diagonalizable because(

0 1
3 2

)
=
(

1 1
3 −1

)(
3
−1

)(
1 1
3 −1

)−1

but B =
(

0 1
−1 2

)
is not (how can we know this?).
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Checking diagonalizability of a square matrix
Theorem 0.2. A matrix A ∈ Rn×n is diagonalizable if and only if it has n
linearly independent eigenvectors (i.e.,

∑
gi = n).

Corollary 0.3. The following matrices are diagonalizable:

• Any matrix whose eigenvalues all have identical geometric and algebraic
multiplicities, i.e., gi = ai for all i;

• Any matrix with n distinct eigenvalues (gi = ai = 1 for all i);

Example 0.6. The matrix B =
(

0 1
−1 2

)
is not diagonalizable because it has

only one distinct eigenvalue λ1 = 1 with a1 = 2 and g1 = 1.
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Special square matrices
• Symmetric matrices A ∈ Rn×n: AT = A

• Orthogonal matrices Q ∈ Rn×n : Q−1 = QT (i.e. QQT = QT Q = I).

Note that the columns of an orthogonal matrix Q = [q1 . . .qn] are an
orthonormal basis for Rn:

qT
i qj =

{
0, i 6= j

1, i = j

Geometrically, an orthogonal matrix multiplying a vector (i.e., Qx ∈ Rn)
represents an rotation of the vector in the space.
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Spectral decomposition of symmetric matrices
Theorem 0.4. Let A ∈ Rn×n be a symmetric matrix. Then there exist an
orthogonal matrix Q = [q1 . . .qn] and a diagonal matrix Λ = diag(λ1, . . . , λn),
such that

A = QΛQT (we say that A is orthogonally diagonalizable in this case)

Note that the above equation is equivalent to

Aqi = λiqi, i = 1, . . . , n

Therefore, the λi’s represent eigenvalues of A while the qi’s are the associated
eigenvectors (with unit norm).

For convenience the diagonal elements of Λ are often sorted in decreasing order
λmax ≡ λ1 ≥ λ2 ≥ · · · ≥ λn ≡ λmin (with same ordering of the eigenvectors).
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Example 0.7. Find the spectral decomposition of the following matrix

A =
(

0 2
2 3

)

Answer.

A = 1√
5

(
1 −2
2 1

)
︸ ︷︷ ︸

Q

·

(
4
−1

)
︸ ︷︷ ︸

Λ

· 1√
5

(
1 −2
2 1

)T

︸ ︷︷ ︸
QT
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Rayleigh quotients
Theorem 0.5. For any given symmetric matrix A ∈ Rn×n,

max
x∈Rn: x6=0

xT Ax
xT x = λmax (when x = “largest” eigenvector of A)

min
x∈Rn: x6=0

xT Ax
xT x = λmin (when x = “smallest” eigenvector of A)

Remark. The quantity xT Ax
xT x is called a Rayleigh quotient.

Example 0.8. For the matrix A in the preceding example, the maximum of the

Rayleigh quotient is 4, achieved when x = 1√
5

(
1
2

)
.
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We prove the theorem on the preceding slide in two ways.

(1) Linear algebra approach:

max
x∈Rn: ‖x‖=1

xT Ax

(2) Multivariable calculus approach:

max
x∈Rn

xT Ax subject to ‖x‖2 = 1

b

b

b

b

b

b

‖x‖ = 1
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Linear algebra approach

Proof. Let A = QΛQT be the spectral decomposition, where Q = [q1, . . . ,qn]
is orthogonal and Λ = diag(λ1, . . . , λn) is diagonal with sorted diagonals from
large to small. Then for any unit vector x,

xT Ax = xT (QΛQT )x = (xT Q)Λ(QT x) = yT Λy

where y = QT x is also a unit vector:

‖y‖2 = yT y = (QT x)T (QT x) = xT QQT x = xT x = 1.

So the original optimization problem becomes the following one:

max
y∈Rn: ‖y‖=1

yT Λ︸︷︷︸
diagonal

y
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To solve this new problem, write y = (y1, . . . , yn)T . It follows that

yT Λy =
n∑

i=1
λi︸︷︷︸
fixed

y2
i (subject to y2

1 + y2
2 + · · ·+ y2

n = 1)

Because λ1 ≥ λ2 ≥ · · · ≥ λn , when y2
1 = 1, y2

2 = · · · = y2
n = 0 (i.e., y = ±e1),

the objective function attains its maximum value yT Λy = λ1.

In terms of the original variable x, the maximizer is

x∗ = Qy∗ = Q(±e1) = ±q1.

In conclusion, when x = ±q1 (largest eigenvector), xT Ax attains its maximum
value λ1 (largest eigenvalue).
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Multivariable calculus approach

Proof. First, we form the Lagrangian function

L(x, λ) = xT Ax− λ(‖x‖2 − 1).

Next, we need to find all of its critical points by solving
∂L

∂x = 2Ax− λ(2x) = 0 −→ Ax = λx

∂L

∂λ
= ‖x‖2 − 1 = 0 −→ ‖x‖2 = 1

This implies that x, λ must be an eigenpair of A. Among them, v1 (corresponding
to largest eigenvalue λ1 of A) is the global optimal solution, and it yields the
absolute maximum value

vT
1 Av1 = v1(λ1v1) = λ1.
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Positive (semi)definite matrices
Definition 0.2. A symmetric matrix A ∈ Rn×n is said to be positive semidefi-
nite if xT Ax ≥ 0 for all x ∈ Rn.

If the equality holds true only for x = 0 (i.e., xT Ax > 0 for all x 6= 0), then A
is said to be positive definite.

Example 0.9. For any rectangular matrix A ∈ Rm×n, show that both of the
matrices AAT ∈ Rm×m and AT A ∈ Rn×n are positive semidefinite.

Theorem. A symmetric matrix A is positive definite (semidefinite) if and
only if all of its eigenvalues are positive (nonnegative).
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