Linear Algebra Review

Dr. Guangliang Chen
August 29, 2018

Outline

Linear Algebra Review

Notation: vectors

Vectors are denoted by boldface lowercase letters (such as \mathbf{a}, \mathbf{b}).
They are always assumed to be in column form.
To indicate their dimensions, we use notation like $\mathbf{a} \in \mathbb{R}^{n}$.
The i th element of \mathbf{a} is written as a_{i} or $\mathbf{a}(i)$.
We denote the constant vector of one as $\mathbf{1}$ (with its dimension implied by the context).

Linear Algebra Review

Notation: matrices

Matrices are denoted by boldface uppercase letters (such as \mathbf{A}, \mathbf{B}).
Similarly, we write $\mathbf{A} \in \mathbb{R}^{m \times n}$ to indicate its size.
The (i, j) entry of \mathbf{A} is denoted by $a_{i j}$ or $\mathbf{A}(i, j)$.
The i th row of \mathbf{A} is denoted by $\mathbf{A}(i,:)$ while its columns are written as $\mathbf{A}(:, j)$, as in MATLAB.

We use I to denote the identity matrix (with its dimension implied by the context).

Linear Algebra Review

Matrix multiplication

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times k}$. Their product is an $m \times k$ matrix

$$
\mathbf{C}=\left(c_{i j}\right), \quad c_{i j}=\sum_{\ell=1}^{n} a_{i \ell} b_{\ell j}=\mathbf{A}(i,:) \cdot \mathbf{B}(:, j)
$$

Linear Algebra Review

It is possible to obtain one full row (or column) of \mathbf{C} at a time via matrix-vector multiplication:

$$
\mathbf{C}(i,:)=\mathbf{A}(i,:) \cdot \mathbf{B}, \quad \mathbf{C}(:, j)=\mathbf{A} \cdot \mathbf{B}(:, j)
$$

Linear Algebra Review

The full matrix \mathbf{C} can be written as a sum of rank-1 matrices:

$$
\mathbf{C}=\sum_{\ell=1}^{n} \mathbf{A}(:, \ell) \cdot \mathbf{B}(\ell,:)
$$

Linear Algebra Review

When one of the matrices is a diagonal matrix, we have the following rules:

$$
\underbrace{\mathbf{A}}_{\text {diagonal }} \mathbf{B}=\left(\begin{array}{ccc}
a_{1} & & \\
& \ddots & \\
& & a_{n}
\end{array}\right)\left(\begin{array}{c}
\mathbf{B}(1,:) \\
\vdots \\
\mathbf{B}(n,:)
\end{array}\right)=\left(\begin{array}{c}
a_{1} \mathbf{B}(1,:) \\
\vdots \\
a_{n} \mathbf{B}(n,:)
\end{array}\right)
$$

$$
\begin{aligned}
\mathbf{A} \underbrace{\mathbf{B}}_{\text {diagonal }} & =[\mathbf{A}(:, 1) \ldots \mathbf{A}(:, n)]\left(\begin{array}{lll}
b_{1} & & \\
& \ddots & \\
& & b_{n}
\end{array}\right) \\
& =\left[b_{1} \mathbf{A}(:, 1) \ldots b_{n} \mathbf{A}(:, n)\right]
\end{aligned}
$$

Linear Algebra Review

Finally, below are some identities involving the vector $\mathbf{1} \in \mathbb{R}^{n}$:

$$
\begin{aligned}
\mathbf{1 1}^{T} & =\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 1
\end{array}\right), \\
\mathbf{1}^{T} \mathbf{1} & =n, \\
\mathbf{A} \mathbf{1} & =\sum_{j} \mathbf{A}(:, j), \\
\mathbf{1}^{T} \mathbf{A} & =\sum_{i} \mathbf{A}(i,:), \\
\mathbf{1}^{T} \mathbf{A} \mathbf{1} & =\sum_{i} \sum_{j} \mathbf{A}(i, j)
\end{aligned}
$$

(vector of row sums)
(horizontal vector of column sums)
(total sum of all entries)

Linear Algebra Review

Example 0.1. Let

$\mathbf{A}=\left(\begin{array}{ccc}3 & 0 & 0 \\ 5 & 1 & -1 \\ -2 & 2 & 4\end{array}\right), \mathbf{B}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1 \\ 2 & 3\end{array}\right), \boldsymbol{\Lambda}_{1}=\left(\begin{array}{lll}1 & & \\ & 0 & \\ & & -1\end{array}\right), \boldsymbol{\Lambda}_{2}=\left(\begin{array}{ll}2 & \\ & -3\end{array}\right)$.
Find the products $\mathbf{A B}, \boldsymbol{\Lambda}_{1} \mathbf{B}, \mathbf{B} \boldsymbol{\Lambda}_{2}, \mathbf{1}^{T} \mathbf{B}, \mathbf{B} \mathbf{1}$ and verify the above rules.

Linear Algebra Review

The entrywise product

Another way to multiply two matrices of the same size, say $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$, is through the Hadamard product, also called the entrywise product:

$$
\mathbf{C}=\mathbf{A} \circ \mathbf{B} \in \mathbb{R}^{m \times n}, \quad \text { with } \quad c_{i j}=a_{i j} b_{i j} .
$$

For example,

$$
\left(\begin{array}{ccc}
0 & 2 & -3 \\
-1 & 0 & -4
\end{array}\right) \circ\left(\begin{array}{lll}
1 & 0 & -3 \\
2 & 1 & -1
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 9 \\
-2 & 0 & 4
\end{array}\right)
$$

An important application of the entrywise product is in computing the product of a diagonal matrix and a rectangular matrix in software.

Linear Algebra Review

Let $\mathbf{A}=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times k}$. Define also a vector $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)^{T} \in \mathbb{R}^{n}$, which represents the diagonal of \mathbf{A}.

Then

$$
\mathbf{A B}=\underbrace{[\mathbf{a} \ldots \mathbf{a}]}_{k \text { copies }} \circ \mathbf{B} .
$$

The former takes $\mathcal{O}\left(n^{2} k\right)$ operations, while the latter takes only $\mathcal{O}(n k)$ operations, which is one magnitude faster.

Linear Algebra Review

Matrix rank

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. The maximal number of linearly independent rows (or columns) is called the rank of \mathbf{A}, and often denoted as $\operatorname{rank}(\mathbf{A})$.

It is known that $\operatorname{rank}(\mathbf{A}) \leq \min (m, n)$.

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to have full rank if $\operatorname{rank}(\mathbf{A})=n$; otherwise, it is said to be rank deficient.

Linear Algebra Review

Matrix trace

The trace of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is defined as the sum of the entries in its diagonal:

$$
\operatorname{trace}(\mathbf{A})=\sum_{i} a_{i i}
$$

If \mathbf{A} is an $m \times n$ matrix and \mathbf{B} is an $n \times m$ matrix, then

$$
\operatorname{trace}(\mathbf{A B})=\operatorname{trace}(\mathbf{B A}) .
$$

Linear Algebra Review

Matrix determinant

The matrix determinant is a rule ${ }^{1}$ to evaluate square matrices to numbers:

$$
\operatorname{det}: \mathbf{A} \in \mathbb{R}^{n \times n} \mapsto \operatorname{det}(\mathbf{A}) \in \mathbb{R} .
$$

The matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be invertible or nonsingular if $\operatorname{det}(A) \neq 0$, which can be shown to be equivalent to being of full rank (i.e., $\operatorname{rank}(\mathbf{A})=n$).

An important property of matrix determinant is for two square matrices of the same size $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$,

$$
\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B}) .
$$

${ }^{1}$ https://en.wikipedia.org/wiki/Determinant

Linear Algebra Review

Example 0.2. For the matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
3 & 0 & 0 \\
5 & 1 & -1 \\
-2 & 2 & 4
\end{array}\right)
$$

find its rank, trace and determinant.

Eigenvalues and eigenvectors

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. The characteristic polynomial of \mathbf{A} is

$$
p(\lambda)=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I}) .
$$

The roots of the characteristic equation $p(\lambda)=0$ are called eigenvalues of \mathbf{A}.
For a specific eigenvalue λ_{i}, any nonzero vector \mathbf{v}_{i} satisfying

$$
\left(\mathbf{A}-\lambda_{i} \mathbf{I}\right) \mathbf{v}_{i}=\mathbf{0}
$$

or equivalently,

$$
\mathbf{A} \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}
$$

is called an eigenvector of \mathbf{A} (associated to the eigenvalue λ_{i}).

Linear Algebra Review

All eigenvectors associated to λ_{i} span a linear subspace, called the eigenspace:

$$
\mathrm{E}\left(\lambda_{i}\right)=\left\{\mathbf{v} \in \mathbb{R}^{n}:\left(\mathbf{A}-\lambda_{i} \mathbf{I}\right) \mathbf{v}=\mathbf{0}\right\} .
$$

The dimension g_{i} of $\mathrm{E}\left(\lambda_{i}\right)$ is called the geometric multiplicity of λ_{i}, while the degree a_{i} of the factor $\left(\lambda-\lambda_{i}\right)^{a_{i}}$ in $p(\lambda)$ is called the algebraic multiplicity of λ_{i}.
Note that we must have $\sum a_{i}=n$ and for all $i, 1 \leq g_{i} \leq a_{i}$.
Example 0.3. For the matrix $\mathbf{A}=\left(\begin{array}{ccc}3 & 0 & 0 \\ 5 & 1 & -1 \\ -2 & 2 & 4\end{array}\right)$, find its eigenvalues and their multiplicities, as well as associated eigenvectors.

Answer. The eigenvalues are $\lambda_{1}=3, \lambda_{2}=2$ with $a_{1}=2, a_{2}=1$ and $g_{1}=g_{2}=1$. The corresponding eigenvectors are $\mathbf{v}_{1}=(0,1,-2)^{T}, \mathbf{v}_{2}=(0,1,-1)^{T}$.

Linear Algebra Review

The following theorem indicates that the trace and determinant of a square matrix can both be computed from the eigenvalues of the matrix.

Theorem 0.1. Let \mathbf{A} be a real square matrix whose eigenvalues are $\lambda_{1}, \ldots, \lambda_{n}$ (with repetitions). Then

$$
\operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} \lambda_{i} \quad \text { and } \quad \operatorname{trace}(\mathbf{A})=\sum_{i=1}^{n} \lambda_{i}
$$

Example 0.4. For the matrix A defined previously, verify the identities in the above theorem.

Linear Algebra Review

Diagonalizability of square matrices

Definition 0.1. A square matrix \mathbf{A} is diagonalizable if it is similar to a diagonal matrix, i.e., there exist an invertible matrix \mathbf{P} and a diagonal matrix $\boldsymbol{\Lambda}$ such that

$$
\mathbf{A}=\mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1}, \quad \text { or equivalently }, \quad \mathbf{P}^{-1} \mathbf{A} \mathbf{P}=\boldsymbol{\Lambda}
$$

Remark. If we write $\mathbf{P}=\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right)$ and $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, then the above equation can be rewritten as

$$
\mathbf{A P}=\mathbf{P} \boldsymbol{\Lambda}, \quad \text { or in columns }, \quad \mathbf{A} \mathbf{p}_{i}=\lambda_{i} \mathbf{p}_{i}, 1 \leq i \leq n .
$$

This shows that the λ_{i} are the eigenvalues of \mathbf{A} and \mathbf{p}_{i} the associated eigenvectors. Thus, the above factorization is called the eigenvalue decomposition of \mathbf{A}, or sometimes the spectral decomposition of \mathbf{A}.

Linear Algebra Review

Example 0.5. The matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right)
$$

is diagonalizable because

$$
\left(\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right)\left(\begin{array}{ll}
3 & \\
& -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right)^{-1}
$$

but $\mathbf{B}=\left(\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right)$ is not (how can we know this?).

Linear Algebra Review

Checking diagonalizability of a square matrix

Theorem 0.2. A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if and only if it has n linearly independent eigenvectors (i.e., $\sum g_{i}=n$).

Corollary 0.3. The following matrices are diagonalizable:

- Any matrix whose eigenvalues all have identical geometric and algebraic multiplicities, i.e., $g_{i}=a_{i}$ for all i;
- Any matrix with n distinct eigenvalues ($g_{i}=a_{i}=1$ for all i);

Example 0.6. The matrix $\mathbf{B}=\left(\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right)$ is not diagonalizable because it has only one distinct eigenvalue $\lambda_{1}=1$ with $a_{1}=2$ and $g_{1}=1$.

Linear Algebra Review

Special square matrices

- Symmetric matrices $\mathbf{A} \in \mathbb{R}^{n \times n}: \mathbf{A}^{T}=\mathbf{A}$
- Orthogonal matrices $\mathbf{Q} \in \mathbb{R}^{n \times n}: \mathbf{Q}^{-1}=\mathbf{Q}^{T}$ (i.e. $\mathbf{Q Q}^{T}=\mathbf{Q}^{T} \mathbf{Q}=\mathbf{I}$).

Note that the columns of an orthogonal matrix $\mathbf{Q}=\left[\mathbf{q}_{1} \ldots \mathbf{q}_{n}\right]$ are an orthonormal basis for \mathbb{R}^{n} :

$$
\mathbf{q}_{i}^{T} \mathbf{q}_{j}= \begin{cases}0, & i \neq j \\ 1, & i=j\end{cases}
$$

Geometrically, an orthogonal matrix multiplying a vector (i.e., $\mathbf{Q x} \in \mathbb{R}^{n}$) represents an rotation of the vector in the space.

Linear Algebra Review

Spectral decomposition of symmetric matrices

Theorem 0.4. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then there exist an orthogonal matrix $\mathbf{Q}=\left[\mathbf{q}_{1} \ldots \mathbf{q}_{n}\right]$ and a diagonal matrix $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, such that
$\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{T} \quad$ (we say that \mathbf{A} is orthogonally diagonalizable in this case)
Note that the above equation is equivalent to

$$
\mathbf{A q}_{i}=\lambda_{i} \mathbf{q}_{i}, \quad i=1, \ldots, n
$$

Therefore, the λ_{i} 's represent eigenvalues of \mathbf{A} while the \mathbf{q}_{i} 's are the associated eigenvectors (with unit norm).

For convenience the diagonal elements of $\boldsymbol{\Lambda}$ are often sorted in decreasing order $\lambda_{\max } \equiv \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \equiv \lambda_{\text {min }}$ (with same ordering of the eigenvectors).

Linear Algebra Review

Example 0.7. Find the spectral decomposition of the following matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
0 & 2 \\
2 & 3
\end{array}\right)
$$

Answer.

$$
\mathbf{A}=\underbrace{\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right)}_{\mathbf{Q}} \cdot \underbrace{\left(\begin{array}{cc}
4 & -1
\end{array}\right)}_{\boldsymbol{\Lambda}} \cdot \underbrace{\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right)^{T}}_{\mathbf{Q}^{T}}
$$

Linear Algebra Review

Rayleigh quotients

Theorem 0.5. For any given symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$,

$$
\begin{aligned}
\max _{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\lambda_{\max } \quad(\text { when } \mathbf{x}=\text { "largest" eigenvector of } \mathbf{A}) \\
\min _{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{T} \mathbf{A}}{\mathbf{x}^{T} \mathbf{x}}=\lambda_{\min } \quad(\text { when } \mathbf{x}=\text { "smallest" eigenvector of } \mathbf{A})
\end{aligned}
$$

Remark. The quantity $\frac{\mathbf{x}^{T} \mathbf{A x}}{\mathbf{x}^{T} \mathbf{x}}$ is called a Rayleigh quotient.
Example 0.8. For the matrix \mathbf{A} in the preceding example, the maximum of the Rayleigh quotient is 4 , achieved when $\mathbf{x}=\frac{1}{\sqrt{5}}\binom{1}{2}$.

Linear Algebra Review

We prove the theorem on the preceding slide in two ways.
(1) Linear algebra approach:

$$
\max _{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}\|=1} \mathbf{x}^{T} \mathbf{A} \mathbf{x}
$$

(2) Multivariable calculus approach:

$$
\max _{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{x}^{T} \mathbf{A} \mathbf{x} \quad \text { subject to }\|\mathbf{x}\|^{2}=1
$$

Linear Algebra Review

Linear algebra approach

Proof. Let $\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{T}$ be the spectral decomposition, where $\mathbf{Q}=\left[\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right]$ is orthogonal and $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is diagonal with sorted diagonals from large to small. Then for any unit vector \mathbf{x},

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x}=\mathbf{x}^{T}\left(\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{T}\right) \mathbf{x}=\left(\mathbf{x}^{T} \mathbf{Q}\right) \boldsymbol{\Lambda}\left(\mathbf{Q}^{T} \mathbf{x}\right)=\mathbf{y}^{T} \boldsymbol{\Lambda} \mathbf{y}
$$

where $\mathbf{y}=\mathbf{Q}^{T} \mathbf{x}$ is also a unit vector:

$$
\|\mathbf{y}\|^{2}=\mathbf{y}^{T} \mathbf{y}=\left(\mathbf{Q}^{T} \mathbf{x}\right)^{T}\left(\mathbf{Q}^{T} \mathbf{x}\right)=\mathbf{x}^{T} \mathbf{Q} \mathbf{Q}^{T} \mathbf{x}=\mathbf{x}^{T} \mathbf{x}=1
$$

So the original optimization problem becomes the following one:

$$
\max _{\mathbf{y} \in \mathbb{R}^{n}:\|\mathbf{y}\|=1} \mathbf{y}^{T} \underbrace{\boldsymbol{\Lambda}}_{\text {diagonal }} \mathbf{y}
$$

Linear Algebra Review

To solve this new problem, write $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$. It follows that

$$
\mathbf{y}^{T} \boldsymbol{\Lambda} \mathbf{y}=\sum_{i=1}^{n} \underbrace{\lambda_{i}}_{\text {fixed }} y_{i}^{2} \quad \text { (subject to } y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}=1 \text {) }
$$

Because $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, when $y_{1}^{2}=1, y_{2}^{2}=\cdots=y_{n}^{2}=0$ (i.e., $\mathbf{y}= \pm \mathbf{e}_{1}$), the objective function attains its maximum value $\mathbf{y}^{T} \boldsymbol{\Lambda} \mathbf{y}=\lambda_{1}$.

In terms of the original variable \mathbf{x}, the maximizer is

$$
\mathbf{x}^{*}=\mathbf{Q y}^{*}=\mathbf{Q}\left(\pm \mathbf{e}_{1}\right)= \pm \mathbf{q}_{1} .
$$

In conclusion, when $\mathbf{x}= \pm \mathbf{q}_{1}$ (largest eigenvector), $\mathbf{x}^{T} \mathbf{A x}$ attains its maximum value λ_{1} (largest eigenvalue).

Linear Algebra Review

Multivariable calculus approach

Proof. First, we form the Lagrangian function

$$
L(\mathbf{x}, \lambda)=\mathbf{x}^{T} \mathbf{A} \mathbf{x}-\lambda\left(\|\mathbf{x}\|^{2}-1\right) .
$$

Next, we need to find all of its critical points by solving

$$
\begin{array}{lll}
\frac{\partial L}{\partial \mathbf{x}}=2 \mathbf{A} \mathbf{x}-\lambda(2 \mathbf{x})=0 & \longrightarrow & \mathbf{A} \mathbf{x}=\lambda \mathbf{x} \\
\frac{\partial L}{\partial \lambda}=\|\mathbf{x}\|^{2}-1=0 & \longrightarrow & \|\mathbf{x}\|^{2}=1
\end{array}
$$

This implies that \mathbf{x}, λ must be an eigenpair of \mathbf{A}. Among them, \mathbf{v}_{1} (corresponding to largest eigenvalue λ_{1} of \mathbf{A}) is the global optimal solution, and it yields the absolute maximum value

$$
\mathbf{v}_{1}^{T} \mathbf{A} \mathbf{v}_{1}=\mathbf{v}_{1}\left(\lambda_{1} \mathbf{v}_{1}\right)=\lambda_{1} .
$$

Linear Algebra Review

Positive (semi)definite matrices

Definition 0.2. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be positive semidefinite if $\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$.

If the equality holds true only for $\mathbf{x}=\mathbf{0}$ (i.e., $\mathbf{x}^{T} \mathbf{A} \mathbf{x}>0$ for all $\mathbf{x} \neq \mathbf{0}$), then \mathbf{A} is said to be positive definite.

Example 0.9. For any rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, show that both of the matrices $\mathbf{A} \mathbf{A}^{T} \in \mathbb{R}^{m \times m}$ and $\mathbf{A}^{T} \mathbf{A} \in \mathbb{R}^{n \times n}$ are positive semidefinite.

Theorem. A symmetric matrix \mathbf{A} is positive definite (semidefinite) if and only if all of its eigenvalues are positive (nonnegative).

