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Principal Component Analysis (PCA)

Motivation
• The MNIST handwritten digits are 784 dimensional - very time consuming

to perform simple tasks like kNN search and kNN classification (Recall the
O(ndk) complexity)

• So we need a way to reduce the dimensionality of the data in order to
increase speed

• However, if we discard some dimensions, will that degrade the performance?

• The answer can be no (as long as we do it carefully). In fact, it may even
improve results in many cases (e.g. owing to noise suppression)
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Principal Component Analysis (PCA)

An important observation
“Useful” information of a data set is often contained in only a small number of
dimensions.
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Principal Component Analysis (PCA)

A real data set
Pixelwise Average Intensity of the MNIST digits:
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• Boundary pixels tend to be zero;

• The number of degrees of freedom of each digit is much less than 784.
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Principal Component Analysis (PCA)

Dimensionality reduction methods to be covered

– Principal Component Analysis
(PCA): preserves variance information
(unsupervised)

– Linear Discriminatory Analysis
(LDA): preserves only discriminatory in-
formation between classes (supervised)
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I will also introduce their two dimensional variants for matrix data, i.e., 2DPCA
and 2DLDA.
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Principal Component Analysis (PCA)

The one-dimensional PCA problem

Given data x1, . . . ,xn ∈ Rd, find a
parametric line x(t) = tv + b defined
by certain vectors v,b ∈ RD (with
‖v‖ = 1) such that the 1D projection
(coefficients)

ai = vT · (xi − b), 1 ≤ i ≤ n

has the largest possible variance.
Note: For parallel lines, the projections
are different, but their variance is the
same! ←− This implies that the solu-
tion is not unique.
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x = tv + b

x = tv + b′
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Principal Component Analysis (PCA)

Mathematical formulation

To make the solution unique, we add a constraint to the problem by requiring
that

0 = ā = 1
n

∑
ai = vT · 1

n

∑
(xi − b) = vT · (x̄− b)

This yields that b = x̄.

Therefore, with such a fixed choice of b, we have eliminated the free parameter
b, so that we only need to find the optimal v.

Since we now have ā = 0, the variance of the projections is simply 1
n−1

∑
a2
i and

we can correspondingly reformulate the original problem as follows:

max
v:‖v‖=1

∑
a2
i , where ai = vT · (xi − x̄).
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Principal Component Analysis (PCA)

Let us further rewrite the objective function:∑
a2
i =

∑
vT (xi − x̄)︸ ︷︷ ︸

ai

(xi − x̄)Tv︸ ︷︷ ︸
ai

=
∑

vT
(
(xi − x̄)(xi − x̄)T

)
v

= vT
(∑

(xi − x̄)(xi − x̄)T
)

︸ ︷︷ ︸
:=C(d×d matrix)

v

Remark. C is called the sample covariance matrix, or the scatter matrix, of
the data.

Accordingly, we have obtained the following problem

max
v:‖v‖=1

vTCv ←−Where did we see this problem?
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Principal Component Analysis (PCA)

About the matrix C

Let X =

xT1
...

xTn

 ∈ Rn×d and X̃ =

x̃T1
...

x̃Tn

 ∈ Rn×d (where x̃i = xi − x̄) be

the original and centered data matrices (rows are data points ←− MATLAB
convention).

Then

C =
∑

x̃ix̃Ti = [x̃1 . . . x̃n] ·

x̃T1
...

x̃Tn

 = X̃T X̃.

This shows that C is square, symmetric and positive semidefinite and thus only
has nonnegative eigenvalues.
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Principal Component Analysis (PCA)

Result

Theorem 0.1. Given a set of points x1, . . . ,xn in Rd with centroid x̄ = 1
n

∑
xi,

the optimal direction for projecting the data (in order to have maximum variance)
is the largest eigenvector of the covariance matrix C =

∑
(xi − x̄)(xi − x̄)T :

max
v:‖v‖=1

vTCv = λ1, achieved when v = v1.

Remark. It can be similarly proved that

max
v:‖v‖=1,vT

1 v=0
vTCv = λ2, achieved when v = v2;

max
v:‖v‖=1,vT

1 v=0,vT
2 v=0

vTCv = λ3, achieved when v = v3.

This shows that v2,v3 etc. are the next best orthogonal directions.
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Principal Component Analysis (PCA)

It can also be shown that the projections
onto different vi are uncorrelated.

Define for each point xi,

ai = vT1 (xi − x̄),
bi = vT2 (xi − x̄).

Then their covariance is∑
aibi =

∑
vT1 (xi − x̄)(xi − x̄)Tv2

= vT1 Cv2 = vT1 (λ2v2)
= λ2(vT1 v2) = 0.

This implies that the variances of the
different projections add.
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Therefore, for any k ≥ 1, the top k

eigenvectors of C span the k-D projec-
tion subspace that preserves the most
variance (among all k-D subspaces),
which is

∑k
j=1 λj .
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Principal Component Analysis (PCA)

Principal component analysis (PCA)

The previous procedure is called principal component analysis.

– vj is called the jth principal direction;

– The projection of the data point xi onto vj , i.e., vTj (xi − x̄), is called the jth
principal component of xi.

In fact, PCA is just a change of coordinate system to use the maximum-variance
directions of the data set!
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Principal Component Analysis (PCA)

Other interpretations of PCA

PCA reduces the dimensionality of data
by maximizing the variance of the pro-
jection (for a given dimension k).

It is also known that the PCA subspace

• optimally preserves the pairwise
distances between the given data
points, and

• minimizes the total orthogonal
fitting error

among all k-dimensional subspaces.
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∑
‖xi − x̄‖2︸ ︷︷ ︸

total scatter

=
∑

a2
i︸ ︷︷ ︸

variance kept

+
∑
‖xi − pi‖2︸ ︷︷ ︸

ortho. fitting error
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Principal Component Analysis (PCA)

Example 0.1. Perform PCA (by hand) on the following data set (rows are data
points):

X =


1 −1
−1 1
2 2
−2 −2

 .
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Principal Component Analysis (PCA)

Computing

PCA requires constructing a sample covariance matrix through multiplication of
the (centered) data matrix X̃ ∈ Rn×d and its transpose:

C = X̃T X̃ ∈ Rd×d

This can be a significant challenge for large data sets in high dimensions:

• The complexity of obtaining C from matrix multiplication is O(nd2).

• It takes O(d3) time to find all the eigenvalues and eigenvectors of C.

We show in the next few slides that the eigenvectors of C can be efficiently
computed from the Singular Value Decomposition (SVD) of X̃.
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Principal Component Analysis (PCA)

SVD of general matrices
Theorem: For any matrix X ∈ Rn×d, there exist two orthogonal matrices
U ∈ Rn×n,V ∈ Rd×d and a nonnegative “diagonal” matrix Σ ∈ Rn×d such that

X = UΣVT .

Definition 0.1. This is called the Singular Value Decomposition (SVD) of X:

• The columns of U are called the left singular vectors of X.

• The diagonals of Σ are called the singular values of X (often sorted in
decreasing order).

• The columns of V are called the right singular vectors of X.

Remark. Compare with symmetric matrices: A = QΛQT ∈ Rn×n.
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

Connections to symmetric matrix decomposition
From the SVD of X we obtain that

XXT = UΣVT ·VΣTUT = U
(
ΣΣT

)
UT ;

XTX = VΣTUT ·UΣVT = V
(
ΣTΣ

)
VT .

This shows that

• U is the eigenvectors matrix of XXT ;

• V is the eigenvectors matrix of XTX;

• The nonzero eigenvalues of XXT ,XTX (which must be the same) equal
the squared singular values of X.
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Principal Component Analysis (PCA)

Reasoning for proving the SVD theorem

Given any matrix X ∈ Rn×d, the SVD can be thought of as solving a matrix
equation for three unknowns (each from a class of matrices):

X = U︸︷︷︸
orthogonal

· Σ︸︷︷︸
diagonal

· VT︸︷︷︸
orthogonal

.

Suppose such solutions exist.

• From previous slide:
XTX = V

(
ΣTΣ

)
VT

This tells us how to find V and Σ (eigenvectors and square roots of
eigenvalues of XTX).
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Principal Component Analysis (PCA)

• After we have found V and Σ, rewrite the matrix equation as

XV = UΣ,

or in columns,

X[v1 . . .vd] = [u1 . . .ur ur+1 . . .un]


σ1

. . .
σr

.
By comparing columns, we obtain

Xvi = σiui, 1 ≤ i ≤ r

This tells us how to find the first r columns of U: ui = 1
σi

Xvi.

This leads to the proof of the SVD theorem on next slide.
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Principal Component Analysis (PCA)

A brief mathematical proof
Let C = XTX ∈ Rd×d. Then C is square, symmetric, and positive semidefinite.

Therefore, by the Spectral Theorem, C = VΛVT for an orthogonal V ∈ Rd×d

and diagonal Λ = diag(λ1, . . . , λd) with λ1 ≥ · · · ≥ λr > 0 = λr+1 = · · · = λd
(where r = rank(X) ≤ d).

Define σi =
√
λi and ui = 1

σi
Xvi for 1 ≤ i ≤ r. Then u1, . . . ,ur are

orthonormal vectors (verify this).

Choose ur+1, . . . ,un ∈ Rn such that U = [u1 . . .urur+1 . . .un] is an orthogonal
matrix. Let Σ ∈ Rn×d with the only nonzero entries being Σii = σi, 1 ≤ i ≤ r.

It can then be verified that XV = UΣ, or equivalently, X = UΣVT .
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Principal Component Analysis (PCA)

Example 0.2. Compute the SVD of

X =

1 −1
0 1
1 0

 .

Answer:

X =


2√
6 0 1√

3
− 1√

6
1√
2

1√
3

1√
6

1√
2 − 1√

3

 ·

√

3
1

 ·( 1√
2

1√
2

− 1√
2

1√
2

)T
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Principal Component Analysis (PCA)

Different versions of SVD

• Full SVD: Xn×d = Un×nΣn×dVT
d×d

• Compact SVD: Suppose rank(X) = r. Define

Ur = [u1, . . . ,ur] ∈ Rn×r

Vr = [v1, . . . ,vr] ∈ Rd×r

Σr = diag(σ1, . . . , σr) ∈ Rr×r

We then have
X = UrΣrVT

r .
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

• Rank-1 decomposition:

X =
r∑
i=1

σiuivTi .

This has the interpretation that X is a weighted sum of rank-one matrices,
as for a square, symmetric matrix:

A = QΛQT =
∑

λiqiqTi .

In sum, X = UΣVT where both U,V have orthonormal columns and Σ is
diagonal.

Lastly, for any version, the SVD of a matrix is not unique.
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Principal Component Analysis (PCA)

Matlab commands for computing matrix SVD

svd – Singular Value Decomposition.

[U,S,V] = svd(X) produces a diagonal matrix S, of the same dimension as
X and with nonnegative diagonal elements in decreasing order, and orthogonal
matrices U and V so that X = U*S*VT .

s = svd(X) returns a vector containing the singular values.

Guangliang Chen | Mathematics & Statistics, San José State University 28/44



Principal Component Analysis (PCA)

svds – Find a few singular values and vectors.

S = svds(A,K) computes the K largest singular values of A.

[U,S,V] = svds(A,K) computes the singular vectors as well. If A is M-by-N and
K singular values are computed, then U is M-by-K with orthonormal columns, S
is K-by-K diagonal, and V is N-by-K with orthonormal columns.
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Principal Component Analysis (PCA)

PCA through SVD
Recall that the principal directions of a data set are given by the top eigenvectors
of the covariance matrix

C = X̃T X̃ ∈ Rd×d.

We have shown that they are also the right singular vectors of X̃:

X̃T X̃ = VΣTUT ·UΣVT = V
(
ΣTΣ

)︸ ︷︷ ︸
Λ

VT

Thus, one may just use the SVD of X̃ to compute the principal directions (and
components), which is more efficient.
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Principal Component Analysis (PCA)

The principal components of the data can be computed from the SVD as follows:
For any principal direction vj , the projection is

X̃vj = σjuj

with optimal variance λj = σ2
j .

Collectively, for the top k principal directions, the principal components are

Y = [X̃v1 . . . X̃vk] = X̃[v1 . . .vk]

= [σ1u1 . . . σkuk] = [u1 . . .uk]

σ1
. . .

σk

 .
The total variance preserved by them is

∑
1≤j≤k σ

2
j .
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Principal Component Analysis (PCA)

An SVD-based algorithm for PCA

Input: Data matrix X ∈ Rn×d and integer k (with 0 < k < d)

Output: Top k principal directions v1, . . . ,vk and corresponding principal com-
ponents Y ∈ Rn×k.

Steps:

1. Center data: X̃ = [x1 . . .xn]T − [m . . .m]T where m = 1
n

∑
xi

2. Perform SVD: X̃ = UΣVT

3. Return: Y = X̃ ·V(:, 1 : k) = U(:, 1 : k) ·Σ(1 : k, 1 : k)
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Principal Component Analysis (PCA)

MATLAB implementation of PCA
MATLAB built-in: [V, US] = pca(X); % Rows of X are observations

Alternatively, you may want to code it yourself:

n = size(X,1);
center = mean(X,1);
Xtilde = X - repmat(center, n, 1);
[U,S,V] = svds(Xtilde, k); % k is the reduced dimension
Y = Xtilde*V;

Note: The first three lines can be combined into one line
Xtilde = X - repmat(mean(X,1), size(X,1), 1);
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Principal Component Analysis (PCA)

Out-of-sample extension for PCA
Suppose we have carried out PCA on a given data set (e.g., training data):

• X̃ = [x1 . . .xn]T − [m . . .m]T where m = 1
n

∑
xi

• X̃ = UΣVT

Now there is a new point x0 (e.g., a test point). How can we extend PCA to x0?

Two options:

• Add the new point to the data set and re-run PCA (maybe more accurate,
but time-consuming)
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Principal Component Analysis (PCA)

• Just use the PCA subspace that has already been obtained to project the
new point directly:

vTi · (x0 −m), i = 1, 2, . . .
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Principal Component Analysis (PCA)

PCA for labeled data
In the supervised setting when data points have labels which divide them into
different groups (i.e., classes), one can perform PCA on the full data set but
without using the labels to project the different classes onto the same PCA plane.
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We call this procedure Global PCA, which requires a higher dimension than each
of the classwise PCAs.
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Principal Component Analysis (PCA)

PCA for classification
Note that in the classification setting there are two data sets: Xtrain and Xtest.

Perform PCA on the entire training set (without the labels) and then project the
test data using the training PCA plane:

Ytest =
(
Xtest − [mtrain . . .mtrain]T

)
·Vtrain

Finally, select a classifier to work in the reduced space:

• PCA + kNN

• PCA + nearest local centroid

• PCA + other classifiers
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Principal Component Analysis (PCA)

How to set the parameter k in principle?
Generally, there are two ways to choose the reduced dimension s:

• Set k = #“dominant” singular values

• Choose k such that the top k principal directions explain a certain fraction
of the variance of the data:

k∑
i=1

σ2
i︸ ︷︷ ︸

explained variance

/

r∑
i=1

σ2
i︸ ︷︷ ︸

total variance

> p.

Typically, p = .95, or .99 (more conservative), or .90 (more aggressive).
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

Some further comments
PCA is an unsupervised method, and the 95% criterion is only a conservative
choice which discards only the directions with small amounts of variance.

In the context of classification it is possible to get much lower than this threshold
while maintaining or even improving the classification accuracy.1

The reason is that higher variance is not always useful for classification.

In practice, one may want to use cross validation to select the optimal projection
dimension.

1http://www.math.sjsu.edu/~gchen/Math285S16/HW2-Terry.pdf
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Principal Component Analysis (PCA)

Lastly, PCA is a linear projection method, which means that for nonlinear data,
PCA will need to use a dimension higher than the manifold dimension (in order
to preserve most of the variance).

(Picture taken from https://medium.com/@snk.nitin)
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Principal Component Analysis (PCA)

HW2 (due Wednesday, October 3)

Please type your work for questions 1 and 2 below.

1. Given a data set of three points (1, 2, 0), (2, 1, 0), (0, 0, 0) in R3, find the
first two principal directions and corresponding principal components of
the data. How much variance is explained by each principal component?

2. Prove the claim in the middle of the proof of the SVD theorem (slide 22)
that u1, . . . ,ur are orthonormal vectors. Hint: consider the dot product
uTi uj for i = j and i 6= j separately.
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Principal Component Analysis (PCA)

3. Download the MNIST data set from the link given in the course syllabus
and then perform PCA on (a) only the digits 0 (b) only the digits 1 and (c)
the two digit classes 0,1 together to project the data onto a 2-dimensional
PCA plane. Plot the projected data in each case (for the combined set of
digits 0 and 1, display data points in the two classes with different symbols
and colors to make them distinguishable from each other).

4. For the USPS data set, how many PCA dimensions are required to preserve
95% of the total variance (for the training data)? 50% variance?

Next, perform kNN classification for each k = 1, 2, . . . , 10 with such two
choices of PCA dimension and also no projection (i.e., all 256 dimensions).
Compare the test error rates for the three versions of data by plotting them
together in one figure (all against the parameter k). Which choice of PCA
dimension seems to work the best? Record also the running time of the
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Principal Component Analysis (PCA)

kNN classifier for each k on each version of data. How much faster is PCA
50% + kNN than kNN alone (i.e., no projection)?

5. Repeat Question 4 with the nearest local centroid classifier instead.

6. For the new data set you found in Question 5 of HW1, explore it again by
adding PCA (with a dimension parameter) as an extra option to consider.
How much improvement can you make regarding test accuracy and time?
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