
LEC 4: Bayes classifiers

Guangliang Chen

October 3, 2018



Outline
• Bayes classifiers: A family of classifiers based on posterior probabilities

ŷ = arg max
j
P (x ∈ Cj | x)

• kNN is a Bayes classifier (nonparametric)

P (x ∈ Cj | x) ≈ #nearest neighbors from class j
#all nearest neighbors examined (k)

• Other Bayes classifiers covered in this course

– LDA / QDA

– Naive Bayes



LDA/QDA and Naive Bayes

Introduction to Bayes classification
Today we look at a class of classifiers that are based on the Bayes’ Rule:

P (Ai | B) = P (B | Ai)P (Ai)∑c
j=1 P (B | Aj)P (Aj)

, for each i = 1, . . . , c

where A1, . . . , Ac are disjoint events that form a partition of the sample space.

In the above,

• P (Aj), 1 ≤ j ≤ c: prior probabilities

• P (B | Aj), 1 ≤ j ≤ c: conditional probabilities

• P (Ai | B), 1 ≤ j ≤ c: posterior probability of event Ai occurring (given
that event B has occurred)

Guangliang Chen | Mathematics & Statistics, San José State University 3/41



LDA/QDA and Naive Bayes

To apply Bayes’ rule in the setting of classification, we first need to introduce a
probabilistic model, i.e., a distribution, from which the training and test data are
assumed to be obtained as two independent random samples.

Probabilistic model Sampling
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LDA/QDA and Naive Bayes

Probabilistic models

We present a mixture model for the un-
derlying distribution (of both training
and test data):

• We model the distribution of
each training class Cj by a pdf
fj(x).

• We assume that the sampling fre-
quency from each training class
Cj is πj (πj > 0,

∑
πj = 1),

i.e., for a fraction πj of the time,
x is sampled from Cj .

f1(x)

f2(x)

f3(x)
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LDA/QDA and Naive Bayes

The Law of Total Probability implies that the mixture distribution has a combined
density function

f(x) =
∑

f(x | x ∈ Cj) · P (x ∈ Cj) =
∑

fj(x) · πj .

The training and test data represent two independent samples from the distribution
f(x).

We call πj = P (x ∈ Cj) the prior probability of x ∈ Cj , i.e., probability that a
new sample x belongs to Cj before it is seen.

For example, if π1 = 0.3, π2 = 0.5, π3 = 0.2, then the prior probability of a new
sample belonging to class 1 is 0.3, and that of a new sample belonging to class 2
is 0.5, etc.
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LDA/QDA and Naive Bayes

How to classify a new sample
A naive way would be to assign any new sample to the class with largest prior
probability

ĵ = argmaxj πj

We don’t know the true values of πj , so we’ll estimate them using the observed
training classes (in fact, only their sizes):

π̂j = nj
n
, ∀ j = 1, . . . , c

This method makes constant prediction (toward the largest training class in size),
with associated error rate 1 − nĵ

n . For example, for a training set of 3 classes
with sizes 100, 100, and 150, the error rate would be 1− 150

350 = 4
7 .

What is a better way?
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LDA/QDA and Naive Bayes

Bayes classification
A (much) better way is to assign the label based on the posterior probabilities
(i.e., probabilities that a new data point belongs to the classes after we see it):

ĵ = argmaxj P (x ∈ Cj | x)

According to Bayes’ Rule, the posterior probabilities are given by

P (x ∈ Cj | x) = f(x | x ∈ Cj) · P (x ∈ Cj)
f(x) ∝ fj(x)πj

Therefore, the Bayes classification rule can be stated as

ĵ = argmaxj fj(x)︸ ︷︷ ︸
likelihood

πj︸︷︷︸
prior prob

←− generic Bayes classifier
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LDA/QDA and Naive Bayes

f1(x)

f2(x)

f3(x)

b
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LDA/QDA and Naive Bayes

Estimating class-conditional probabilities fj(x)
To specify the component distributions fj(x), we pick a common distribution
type (such as Gaussian) but combine it with different parameter values.

Different choices of the model lead to different Bayes classifiers:

• LDA/QDA - multivariate Gaussian distributions

fj(x) = 1
(2π)d/2|Σj |1/2 e

− 1
2 (x−µj)TΣ−1

j
(x−µj), ∀ j = 1, . . . , c

• Naive Bayes - by assuming independent features in x = (x1, . . . , xd):

fj(x) =
d∏
k=1

fjk(xk)←− 1D distributions to be specified
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LDA/QDA and Naive Bayes

What are multivariate Gaussians?
Briefly speaking, they are generalizations of the 1D Gaussian distribution

f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2

in higher dimensions:

f(x) = 1
(2π)d/2|Σ|1/2 e

− 1
2 (x−µ)TΣ−1(x−µ), ∀ x ∈ Rd

Remark. If Σ = σ2I (i.e., constant diagonal), then the above formula reduces to

f(x) = 1
(2πσ2)d/2 e

− ‖x−µ‖2

2σ2 , ∀ x ∈ Rd
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LDA/QDA and Naive Bayes

In the pdf of a multivariate Gaussian,

• µ = E(x) ∈ Rd: center of the distribution

• Σ = E((x− µ)(x− µ)T ) ∈ Rd×d: covariance matrix
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LDA/QDA and Naive Bayes

The Bivariate case (d = 2)

x =
(
x1
x2

)
, µ =

(
m1
m2

)
, Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)

In this case, the joint density is

f(x1, x2) = 1
2πσ1σ2

√
1− ρ2

· exp
(
− 1

2(1− ρ2)

[
(x1 −m1)2

σ2
1

+ (x2 −m2)2

σ2
2

− 2ρ(x1 −m1)(x2 −m2)
σ1σ2

])

Here, mi, σ
2
i are mean and variance of xi, and ρ is the correlation between x1, x2.
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LDA/QDA and Naive Bayes

Marginals of the bivariate normal are 1D normal distributions: N(µi, σ2
i )
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LDA/QDA and Naive Bayes

Bayes classification with multivariate Gaussians
Under such a mixture of Gaussians model,

fj(x) = 1
(2π)d/2|Σj |1/2 e

− 1
2 (x−µj)TΣ−1

j
(x−µj), ∀ j = 1, . . . , c

the Bayes classification rule (for a new point x)

ĵ = argmaxj fj(x)πj

becomes the following:

ĵ = argmaxj
1

(2π)d/2|Σj |1/2 e
− 1

2 (x−µi)TΣ−1
j

(x−µj) · πj

= argmaxj log πj −
1
2 log |Σj | −

1
2(x− µj)TΣ−1

j (x− µj)
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LDA/QDA and Naive Bayes

Example 0.1. Let’s consider the special case of two 1D Gaussians:

b b

µ1 µ2

σ1 σ2

bb b bb bb b b b bb b b

Suppose we know the true values of µ1, µ2, σ1, σ2. The corresponding Bayes
decision rule is

ĵ = argmaxj log πj −
1
2 log(σ2

j )− (x− µj)2

2σ2
j
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LDA/QDA and Naive Bayes

Two remarks:

• If π1 = π2 and σ1 = σ2, then the rule will assign x to the closer mean µj
(larger πj will favor the class further).

• The boundary point can be found by solving the following (quadratic)
equation

log π1 −
1
2 log(σ2

1)− (x− µ1)2

2σ2
1

= log π2 −
1
2 log(σ2

2)− (x− µ2)2

2σ2
2

To simplify the math, we assume that the two components have equal
variance (i.e., σ1 = σ2 = σ), in which case we obtain

x = µ1 + µ2

2 + σ2 log(π1/π2)
µ2 − µ1
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LDA/QDA and Naive Bayes

Quadratic Discriminant Analysis (QDA)
The decision boundary of a classifier consists of points that have a tie.

For the Bayes classification rule based on a mixture of Gaussians model, the
decision boundaries are given by

log πj −
1
2 log |Σj | −

1
2(x− µj)TΣ−1

j (x− µj)

= log π` −
1
2 log |Σ`| −

1
2(x− µ`)TΣ−1

` (x− µ`)

This shows that the Bayes classifier has quadratic boundaries (between each pair
of training classes).

We call the above classifier Quadratic Discriminant Analysis (QDA).

Guangliang Chen | Mathematics & Statistics, San José State University 18/41



LDA/QDA and Naive Bayes

Parameter estimation for QDA
The formulation of the QDA classifier

ĵ = argmaxj log πj −
1
2 log |Σj | −

1
2(x− µj)TΣ−1

j (x− µj)

is based on the model parameters πj ,µj ,Σj but their values are typically unknown.

Given training data, we estimate them as follows:

π̂j = nj
n
, µ̂j = 1

nj

∑
xi∈Cj

xi, Σ̂j = 1
nj − 1

∑
xi∈Cj

(xi − µ̂j)(xi − µ̂j)T

Thus, the practical QDA classification rule is

ĵ = argmaxj log π̂j −
1
2 log |Σ̂j | −

1
2(x− µ̂j)T Σ̂−1

j (x− µ̂j)
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LDA/QDA and Naive Bayes

LDA (left) and QDA (right)
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LDA/QDA and Naive Bayes

The case of equal covariance
QDA assumes that the component distributions are all multivariate Gaussian (but
with separate means µj and covariances Σj).

However, there are a lot of parameters that need to be estimated from the
training data (especially when in very high dimensions)! ←− There is also a risk
of overfitting

To ease the computational burden, we assume that

Σ1 = · · · = Σc = Σ

so that the different component distributions are just shifted versions of each
other (i.e., same covariance, different centers).
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LDA/QDA and Naive Bayes

In this case, the Bayes classification rule becomes

ĵ = argmaxj log πj −
1
2(x− µj)TΣ−1(x− µj)

= argmaxj xTΣ−1µj −
1
2µTj Σ−1µj + log πj .

The decision boundary of the equal-covariance classifier is:

xTΣ−1µj −
1
2µTj Σ−1µj + log πj = xTΣ−1µ` −

1
2µT` Σ−1µ` + log π`

which simplifies to

xTΣ−1(µj − µ`) = 1
2
(
µTj Σ−1µj − µT` Σ−1µ`

)
+ log π`

πj

This is a hyperplane with normal vector Σ−1(µj−µ`), showing that the classifier
has linear boundaries.
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LDA/QDA and Naive Bayes

We call it the Linear Discriminant Analysis (LDA) classifier.

Source: http://mlpy.sourceforge.net/docs/3.5/lin_class.html
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LDA/QDA and Naive Bayes

Parameter estimation for LDA
Similarly, we can use the training data to estimate the LDA parameters πj ,µj in
the same way as before:

π̂j = nj
n
, µ̂j = 1

nj

∑
xi∈Cj

xi

However, for the common covariance matrix Σ, we use the following pooled
estimator:

Σ̂ = 1
n− c

c∑
j=1

∑
xi∈Cj

(xi − µ̂j)(xi − µ̂j)T

This leads to the following practical LDA classifier:

ĵ = argmaxj xT Σ̂−1µ̂j −
1
2 µ̂Tj Σ̂−1µ̂j + log π̂j .
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LDA/QDA and Naive Bayes

When statistics meets optimization
We have introduced LDA both as a supervised dimensionality reduction approach
and as a Bayes classifier. This is not a conflict.

We show this in the two-class setting, where the decision boundary of the LDA
classifier is a hyperplane with normal vector Σ̂−1(µ̂1 − µ̂2).

As a dimensionality reduction technique, LDA projects the data onto the following
direction

v = S−1
w (m1 −m2)←− Same as the above normal vector

where

Sw =
2∑
j=1

∑
x∈Cj

(x−mj)(x−mj)T = (n− 2)Σ̂, m1 = µ̂1, m2 = µ̂2.

Guangliang Chen | Mathematics & Statistics, San José State University 25/41



LDA/QDA and Naive Bayes

Therefore, we can combine both per-
spectives to fully understand LDA:

• A Linear classifier

• Assuming a mixture of Gaussians
model (with equal covariance)
when used as a classifier

• Based on Bayes’ rule

• Separating training data along
the optimal discriminatory direc-
tion

• As a projection method, it is ap-
plicable to more general data.

v
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LDA/QDA and Naive Bayes

MATLAB implementation of LDA/QDA
% fit a discriminant analysis classifier

mdl = fitcdiscr(trainData, trainLabels, ’DiscrimType’, type)

% where type is one of the following:

• ‘Linear’ (default): LDA

• ‘Quadratic’: QDA

% classify new data

pred = predict(mdl, testData)
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LDA/QDA and Naive Bayes

Python scripts for LDA/QDA

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

#from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

lda = LinearDiscriminantAnalysis()

pred = lda.fit(trainData,trainLabels).predict(testData)

print("Number of mislabeled points: %d" %(testLabels != pred).sum())
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LDA/QDA and Naive Bayes

The singularity issue in LDA/QDA
Both LDA and QDA require inverting covariance matrices, which may be singular
in the case of high dimensional data.

Common techniques to fix this:

• Apply PCA to reduce dimensionality first, or

• Regularize the covariance matrices, or

• Use psuedoinverse: ’pseudoLinear’, ’pseudoQuadratic’:

(Sw)† = (QΛQT )† = QΛ†QT , Λ†ii =
{

1
λ i
, λi > 0

0, λi = 0
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LDA/QDA and Naive Bayes

Naive Bayes
The naive Bayes classifier is also based on the Bayes decision rule:

ĵ = argmaxj fj(x)πj

However, a simplifying assumption is made on the individual features of x:

fj(x) =
d∏
k=1

fjk(xk) (x1, . . . , xd are independent)

such that the classification rule becomes

ĵ = argmaxj πj
d∏
k=1

fjk(xk) = argmaxj log πj +
d∑
k=1

log fjk(xk)

where fjk remain to be specified.
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LDA/QDA and Naive Bayes

Two applications
• Classification of digital images: In this case, each pixel is a feature, so naive

Bayes assumes that pixel intensities are independent random variables.
b b bb
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LDA/QDA and Naive Bayes

• Classification of text documents: Each term defines a feature and their
frequencies are assumed to be independent random variables.
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(Bag of words model for text corpus)
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LDA/QDA and Naive Bayes

How to estimate fij

The independence assumption reduces the high dimensional density estimation
problem ({fj(x)}j) to a union of simple 1D problems ({fjk(xk)}j,k).

Again, we need to pick a model for the 1D distributions fjk.

For continuous features (e.g., image data), the standard choice is the 1D normal
distribution

fjk(x) = 1√
2πσjk

e−(x−µjk)2/2σ2
jk

where µjk, σjk can be estimated similarly using the training data. With such a
choice, the classifier (which is called Gaussian naive Bayes) is

ĵ = argmaxj log πj −
d∑
k=1

[
log σjk + (xk − µjk)2/2σ2

jk

]
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LDA/QDA and Naive Bayes

Other cases:

• For categorical features (e.g., sex, education level, etc.), we can use the
binomial/multinomial distribution to model such a feature

• For count-based data (such as the bag-of-words model for text documents),
we can also use the multinomial distribution to model the frequency counts
of different terms in a document

Such classifiers are called multinomial naive Bayes (and they can become the
topic of one or two final projects).
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LDA/QDA and Naive Bayes

MATLAB functions for Naive Bayes

% fit a naive Bayes classifier

mdl = fitcnb(trainData, trainLabels, ’Distribution’, ‘normal’)

% classify new data

pred = predict(mdl, testData)
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LDA/QDA and Naive Bayes

Python scripts for Naive Bayes (for continuous
features)

from sklearn.naive_bayes import GaussianNB

gnb = GaussianNB()

pred = gnb.fit(trainData, trainLabels).predict(testData)

print("Number of mislabeled points: %d" %(testLabels != pred).sum())
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LDA/QDA and Naive Bayes

Improving Naive Bayes

Independence assumption: apply
PCA to get uncorrelated features (closer
to being independent)

Choice of distribution: can use kernel
smoothing to be more flexible
mdl = fitcnb(trainData, trainLa-
bels, ’Distribution’, ‘kernel’)
However, this will be at the expense of
speed.
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LDA/QDA and Naive Bayes

Bayes classification: A summary
• General decision rule

ĵ = argmaxj fj(x)πj

• Examples of Bayes classifiers

– QDA: multivariate Gaussians

– LDA: multivariate Gaussians with equal covariance

– Naive Bayes: independent features x1, . . . , xd
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LDA/QDA and Naive Bayes

HW4 (due October 27, Saturday noon)
This is a group assignment, meaning that you can work on the problems either
alone or with a partner (in the latter case, one submission is enough, but obviously
you need to indicate who you collaborated with).

1. First use PCA to project the USPS data set (both training and test) into
s dimensions (for each choice below) and then use the LDA classifer to
classify the test data. Present and discuss your results (you may want to
compare with kNN and NLC when also combined with PCA).

• s = 88 (95% variance)

• s = your own choice (preferably better than 88)

2. Repeat Question 1 with QDA instead of LDA. Is it better than LDA?
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LDA/QDA and Naive Bayes

3. In the setting of Question 1 apply now the Naive Bayes classifier (by fitting
pixelwise normal distributions) with the following choices of s:

• s = 256 (no projection)

• s = 88 (95% variance)

• s = your own choice

What are your results like (when comparing with LDA and QDA)?

4. Apply PCA + LDA/QDA to the following subsets of the MNIST data set:

• (a) 0, 1 (b) 4, 9 (c) 0, 1, 2 and (d) 3, 5, 8

Report your results.
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LDA/QDA and Naive Bayes

5. I have simulated a data set consisting of two bivariate Gaussians with
nearly the same covariance (In the plot below, red and green colors code
the two training classes and black points are the test data):

It has been listed on the course web-
page, so you can go there and down-
load it for homework use.

Apply LDA and QDA separately to
classify the test data and report their
error rates. Can you add the deci-
sion boundary of each classifier to
the plot?
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