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Logistic Regression

Classification is a special instance of regression
Classification is essentially a regression problem with discrete outputs (i.e., a
small, finite set of values):

y︸︷︷︸
discrete response

= f ( x1, . . . , xd︸ ︷︷ ︸
features (predictors)

).

Thus, it can be approached from a regression point of view.

To explain ideas, we start with the 1-D binary classification problem which has
only one predictor x and a binary response y = 0 or 1:

y︸︷︷︸
binary response

= f( x︸︷︷︸
predictor

).
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Logistic Regression

Motivating example
Consider a specific example where x represents a person’s height while y denotes
the person’s sex (0 = Female, 1 = Male).
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Simple linear regression is obviously not appropriate in this case.
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Logistic Regression

Motivating example
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A better option is to use an S-shaped curve to fit the data.
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Logistic Regression

Which functions have such shapes?
An example is the logistic/sigmoid function:

g(z) = 1
1 + e−z

, −∞ < z <∞

Can you think of another function that has such a shape?
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Logistic Regression

Properties of the logistic function

• g(z) is defined for all real numbers z

• g(z) is monotonically increasing over its domain

• 0 < g(z) < 1 for all z ∈ R

• g(0) = 0.5

• limz→−∞ g(z) = 0 and limz→+∞ g(z) = 1

• g′(z) = g(z)(1− g(z)) for any z. ←− This is a very important property
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Logistic Regression

Making the logistic function more flexible
We generalize the logistic function to a location-scale family:

g(θ0 + θ1x) = 1
1 + e−(θ0+θ1x)

where θ0 ∈ R is a location parameter and θ1 > 0 is a scale parameter.
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Logistic Regression

The logistic regression problem

Once we fix the template function g(z),
the logistic regression problem reduces
to parameter estimation based on a set
of examples.

Problem.
Given training data (xi, yi), 1 ≤ i ≤ n,
find θ0, θ1 such that the curve

y = g(θ0 + θ1x) = 1
1 + e−(θ0+θ1x)

fits the data in some optimal way.
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Logistic Regression

How to define the optimality

There are two different ways:

• Optimization approach.

• Statistical approach.
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Logistic Regression

The optimization approach
We regard ŷ = g(θ0 + θ1x) as the fitted value at x and use a loss function, e.g.,
square loss `(y, ŷ) = (y − ŷ)2, to quantify the goodness of fit of any such curve:

min
θ=(θ0,θ1)

n∑
i=1

`(yi, ŷi), where ŷi = g(θ0 + θ1xi)

In the above,

• yi: the ith observation

• ŷi: the fitted value at xi

• ∑ `(yi, ŷi): total loss
Height (cm)

160 165 170 175 180 185

G
e

n
d

e
r

0

1

Guangliang Chen | Mathematics & Statistics, San José State University 11/46



Logistic Regression

Clearly, the previous formulation is independent of the choices of the template
function g and of the loss function `.

Commonly-used loss functions:

• 0/1 loss: `(y, ŷ) = 1y 6=ŷ

• Square loss: `(y, ŷ) = (y − ŷ)2

• Hinge loss: `(y, ŷ) = |y − ŷ|

• Logistic loss: `(y, ŷ) =
−y log ŷ − (1− y) log(1− ŷ)
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Logistic Regression

For example, when the square loss is used (along with the sigmoid template
function), the problem becomes the following:

min
θ=(θ0,θ1)

n∑
i=1

(yi − ŷi)2,

where
ŷi = g(θ0 + θ1xi) = 1

1 + e−(θ0+θ1xi)
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Logistic Regression

Computing tool: multivariable calculus
The gradient of the total loss (as a function of θ0, θ1) is

∂

∂θ

n∑
i=1

`(yi, ŷi) =
(

n∑
i=1

∂`

∂θ0
,

n∑
i=1

∂`

∂θ1

)∣∣∣∣∣
(yi,ŷi)

One approach to minimizing the total loss is to find its critical points
n∑
i=1

∂`

∂θ0
= 0,

n∑
i=1

∂`

∂θ1
= 0

However, this often leads to very complex equations.
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Logistic Regression

For example, when the square loss is used, the gradient can be shown to be

−2
(

n∑
i=1

ŷi(1− ŷi)(yi − ŷi),
n∑
i=1

xiŷi(1− ŷi)(yi − ŷi)
)

Proof:

Finding the critical points in this case is highly nontrivial and in practice, one
often resorts to Newton’s method1 for finding the roots.

1http://tutorial.math.lamar.edu/Classes/CalcI/NewtonsMethod.aspx
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Logistic Regression

A second approach to finding the minimum is through gradient descent: Start
from some location and always move by a small amount in the direction of largest
decrease (i.e., negative gradient):

If the function is f(x), the current location is x(t), then the next move will be

x(t+1) = x(t) − η · f ′(x(t))

where η > 0 is a parameter, called learning rate.
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Logistic Regression

This approach can also be generalized to higher dimensions:

x(t+1) = x(t+1) − η · ∇f(x(t)), x(0) specified by user

This is one of the most important and popular techniques in machine learning.

In our setting, the gradient descent rule is the following

θ
(t+1)
0 := θ

(t)
0 − η

n∑
i=1

∂`

∂θ0
(yi, ŷi)

∣∣∣∣∣
θ

(t)
0 ,θ

(t)
1

θ
(t+1)
1 := θ

(t)
1 − η

n∑
i=1

∂`

∂θ1
(yi, ŷi)

∣∣∣∣∣
θ

(t)
0 ,θ

(t)
1
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Logistic Regression

The statistical way
Key: We will interpret p(x,θ) = g(θ0 + θ1x) = 1

1+e−(θ0+θ1x) as probability!
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Logistic Regression

More specifically, assume that there is a probabilistic distribution for Y (sex) at
each given x (height):

P (Y = 1 | x) = p(x; θ),
P (Y = 0 | x) = 1− p(x; θ)

This implies that
Y | x ∼ Bernoulli(p = p(x; θ))

with associated pmf

f(y; p) = P (Y = y | x) = py(1− p)1−y, for y = 0, 1
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Logistic Regression

Assuming independent training examples (xi, yi), 1 ≤ i ≤ n, the likelihood
function of the sample is

L(θ) =
n∏
i=1

f(yi; p(xi; θ)) =
n∏
i=1

p(xi; θ)yi(1− p(xi; θ))1−yi

The maximizer of L(θ), called the Maximum Likelihood Estimator (MLE) of θ,
gives the optimal parameter values for the model.

This is also a very important tool for machine learning (whenever parameter
estimation for a distribution is involved).
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Logistic Regression

Connection to the optimization approach
In practice, the MLE of θ is obtained by maximizing the log likelihood function

max
θ

logL(θ) =
n∑
i=1

yi log p(xi; θ) + (1− yi) log(1− p(xi; θ))

Mathematically, it is equivalent to the following minimization problem

min
θ
− logL(θ) =

n∑
i=1

(−yi log p(xi; θ)− (1− yi) log(1− p(xi; θ)))

This is exactly optimization with the logistic loss

`(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ)
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Logistic Regression

Finding the MLE of θ

This falls under the previous setting of optimization via multivariable calculus in
two ways. However, in this case, things are quite simple.

First, it can be shown that the gradient of the log likelihood function is(
∂ logL(θ)

∂θ0
,
∂ logL(θ)

∂θ1

)
=
(

n∑
i=1

(yi − p(xi; θ)),
n∑
i=1

(yi − p(xi; θ))xi

)

Proof:
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Logistic Regression

The same two methods can be used to find the MLE:

• Critical-point method:

0 =
n∑
i=1

(yi − p(xi; θ))

0 =
n∑
i=1

(yi − p(xi; θ))xi

Due to the complex form, Newton’s iteration has to be used.
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Logistic Regression

• Gradient descent: Always move by a small amount in the direction of
largest increase (i.e., gradient):

θ
(t+1)
0 := θ

(t)
0 + η ·

n∑
i=1

(yi − p(xi; θ(t)))

θ
(t+1)
1 := θ

(t)
1 + η ·

n∑
i=1

(yi − p(xi; θ(t)))xi

in which η > 0 is the learning rate.
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Logistic Regression

How to classify new observations
After we fit the logistic model to the training set,

p(x; θ) = 1
1 + e−(θ0+θ1x)

we may use the following decision rule for a new observation x∗:

Assign label y∗ = 1 if and only if p(x∗; θ) > 1
2 .

Remark. Logistic regression is actually also a kind of Bayes classifier because it
computes posterior probabilities at every x:

p(x; θ) = P (Y = 1 | x)
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Logistic Regression

MATLAB functions for logistic regression

x = [162 165 166 170 171 168 171 175 176 182 185]’;

y = [0 0 0 0 0 1 1 1 1 1 1]’;

glm = fitglm(x, y, ’linear’, ’distr’, ’binomial’);

p = predict(glm, x);

% p = [0.0168, 0.0708, 0.1114, 0.4795, 0.6026, 0.2537, 0.6026, 0.9176,
0.9483, 0.9973, 0.9994]
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Logistic Regression

Python scripts for logistic regression

import numpy as np
from sklearn import linear_model

x = np.transpose(np.array([[162, 165, 166, 170, 171, 168, 171, 175, 176,
182, 185]]))

y = np.transpose(np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]))

logreg = linear_model.LogisticRegression(C=1e5).fit(x, y.ravel())

prob = logreg.predict_proba(x) # fitted probabilities

pred = logreg.predict(x) # prediction of labels
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Logistic Regression

R script

x = c(162, 165, 166, 170, 171, 168, 171, 175, 176, 182, 185)

y = c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)

model <- glm(y∼x,family=binomial(link=’logit’))

p = model$fitted.values
# p = [0.0168, 0.0708, 0.1114, 0.4795, 0.6026, 0.2537, 0.6026, 0.9176,
0.9483, 0.9973, 0.9994]

theta = model$coefficients

fitted.prob ← predict(model,data.frame(x=c(167,170,175)),type=’response’)
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Logistic Regression

The general binary classification problem
When there are multiple predictors x1, . . . , xd, we let

p(x; θ) = 1
1 + e−(θ0+θ1x1+···+θdxd) .

Still the same procedure to find the best θ.

The classification rule also remains the same:

y = 1p(x;θ)>0.5

We call this classifier the Logistic Regression classifier.
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Logistic Regression

Understanding LR: decision boundary

The decision boundary consists of all points x ∈ Rd such that

p(x; θ) = 1
2

or equivalently,
θ0 + θ1x1 + · · ·+ θdxd = 0

This is a hyperplane showing that LR is a linear classifier.
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Logistic Regression

Understand LR: model
The LR model can be rewritten as

log p

1− p = θ0 + θ1x1 + · · ·+ θdxd = θ · x

where x0 = 1 (for convenience) and

• p: probability of “success” (i.e. Y = 1)

• p
1−p : odds of “winning”

• log p
1−p : logit (a link function)

Remark. LR belongs to a family called generalized linear models (GLM).
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Logistic Regression

Multiclass extensions
We have introduced logistic regression in the setting of binary classification.

There are two ways to extend it for multiclass classification:

• Union of binary models

– One versus one: construct a LR model for every pair of classes

– One versus rest: construct a LR model for each class against the
rest of training set

In either case, the “most clearly winning” class is adopted as the final
prediction.

• Softmax Regression (fixed versus rest)
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Logistic Regression

Union of binary models
Logistic regression can be extended to a multiclass setting in two ways:

b
b
b b

b
b

b
b
b b

b
b

One-versus-one extension One-versus-rest extension

In either case, the “maximally winning” class is adopted as the final prediction:
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Logistic Regression

• For the one-versus-one extension, the final prediction for a test point is
the most frequent label predicted;

• For the one-versus-rest extension,

– The reference classes are assigned label 1 (the rest with label 0)

– For each binary model, record the ‘score’: p(x,θ(j)) (not the pre-
dicted label)

– The final prediction is the reference class with the highest score

y = arg max
j

p(x,θ(j))
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Logistic Regression

What is softmax regression?

Softmax regression fixes one class (say
class 1) and fits c − 1 binary logistic
regression models for each of the re-
maining classes against that class:

log P (Y = j | x)
P (Y = 1 | x) = θ(j) · x, 2 ≤ j ≤ c

Equivalently, this is

P (Y = j | x) = P (Y = 1 | x) · eθ
(j)·x

b
b
b b

b
b

θ(2) · x = 0 θ(3) · x = 0

The prediction for a new observation is the class with max (relative) probability:

ŷ = arg max {0, θ(2) · x, . . . , θ(c) · x}
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Logistic Regression

Solving the system together with the constraint
c∑
j=1

P (Y = j | x) = 1

yields that
P (Y = 1 | x) = 1

1 +
∑c
j=2 e

θ(j)·x ←− ` = 1

and correspondingly,

P (Y = ` | x) = eθ
(`)·x

1 +
∑c
j=2 e

θ(j)·x , ` = 2, . . . , c

Remark. If we define θ(1) = 0, then the two sets of formulas may be unified

P (Y = ` | x) = eθ
(`)·x∑c

j=1 e
θ(j)·x , ` = 1, . . . , c
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Logistic Regression

The new formula is actually shift-invariant with respect to the parameters

P (Y = ` | x) = eθ
(`)·x∑c

j=1 e
θ(j)·x = e(θ(`)+t)·x∑c

j=1 e
(θ(j)+t)·x , ` = 1, . . . , c

We may thus relax the constant θ(1) = 0 to be a parameter so that we have a
symmetric model, with (redundant) parameters Θ = {θ(1), . . . ,θ(c)}.

Remark. The form of the above probabilities is the so-called softmax function:

softmax(`, α1, . . . , αc) = eα`∑c
j=1 e

αj

It is a smooth function trying to approximate the indicator function

1α` is largest =
{

1 α` is largest
0, otherwise

.
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Logistic Regression

The distribution of Y , taking discrete values 1, . . . , c, is multinomial with the
corresponding probabilities

pj = P (Y = j | x; Θ) = eθ
(j)·x∑c

i=1 e
θ(i)·x , j = 1, . . . , c

Therefore, softmax regression is also called multinomial logistic regression.

The decision rule for any new observation is

ŷ = arg max
j
pj = arg max

j
P (Y = j | x; Θ)

Clearly, it is also a Bayes classifier.
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Logistic Regression

Parameter estimation

Like logistic regression, softmax regression estimates the parameters by maximizing
the likelihood of the training set:

L(Θ) =
n∏
i=1

P (Y = yi | xi; Θ) =
n∏
i=1

eθ
(yi)·xi∑c

j=1 e
θ(j)·xi

The MLE can be found by using either Newton’s method or gradient descent.
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Logistic Regression

MATLAB functions for multinomial LR

x = [162 165 166 170 171 168 171 175 176 182 185]’;

y = [0 0 0 0 0 1 1 1 1 1 1]’;

B = mnrfit(x,categorical(y));

p = mnrval(B, x);
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Logistic Regression

Python function for multinomial LR

logreg = linear_model.LogisticRegression(C=1e5, multi_class=
‘multinomial’, solver=’newton-cg’).fit(x, y.ravel())

# multi_class = ‘ovr’ (one versus rest) by default

# solver=‘lbfgs’ would also work (default =’liblinear’)
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Logistic Regression

Feature selection for logistic regression
Logistic regression tends to overfit the data in the setting of high dimensional
data (i.e., many predictors). There are two ways to resolve this issue:

• First use a dimensionality reduction method (such as PCA, LDA) to
project data into lower dimensions

• Add a regularization term to the objective function

min
θ=(θ0,θ1)

−
n∑
i=1

yi log p(xi; θ) + (1− yi) log(1− p(xi; θ)) + C‖θ‖pp

where p is normally set to 2 (`2 regularization) or 1 (`1 regularization).
The constant C > 0 is called a regularization parameter; larger values of
C would lead to sparser (simpler) models.
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Logistic Regression

Python function for regularized LR

# with default values
logreg = linear_model.LogisticRegression(penalty=’l2’, C=1.0,
solver=’liblinear’, multi_class=’ovr’)

# penalty: may be set to ‘l1’
# C: inverse of regularization strength (smaller values specify stronger
regularization). Cross-validation is often needed to tune this parameter.
# multi_class: may be changed to ‘multinomial’ (no ‘ovo’ option)
# solver: {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’}. Algorithm to use in the
optimization problem.

(to be continued)
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Logistic Regression

(cont’d from last page)

# solver: {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’}. Algorithm to use in the
optimization problem.

• For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ is faster
for large ones.

• For multiclass problems, only ‘newton-cg’ and ‘lbfgs’ handle multino-
mial loss; ‘sag’ and ‘liblinear’ are limited to one-versus-rest schemes.

• ‘newton-cg’, ‘lbfgs’ and ‘sag’ only handle L2 penalty.
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Logistic Regression

HW5 (due Monday, Nov 5)
1. Implement Newton’s method to determine an approximation to the so-

lution to cosx = x that lies in the interval [0, π/2]. Use three different
initializations x0 = 0, 1, π/2 and plot the respective sequences of numbers
that converge to the exact solution. What is your conclusion?

2. Use gradient descent to find the local minimum of the following function

f(x) = 1
4x

4 − 3x3 + 7x− 5

around x = 0. Try three different learning rates η = 0.01, 0.05, 0.1 and
plot the respective sequences (up to 30 iterations). Which learning rate is
the best?
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Logistic Regression

3. Apply the binary logistic regression classifier to the data in HW4-Q5 to
compare with LDA in terms of decision boundary and test accuracy.

4. Implement the three multiclass extensions of the binary logistic regression
classifier (one-vs-one, one-vs-rest, and multinomial) and apply them to
the USPS data set (after PCA 95%). Compare with the multiclass LDA
classifier in terms of test accuracy.

5. Repeat the previous question with the following subsets of the MNIST
data set: (a) 4, 9, (b) 0, 1, 2 (c) 3, 5, 8

6 (Extra credit) Apply the `1-regularized multinomial logistic regression to
the USPS data set (no pca is needed). How does it compare with those in
Question 4?
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