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Outline
• Binary SVM

– Linearly separable, no outliers

– Linearly separable, with outliers

– Nonlinearly separable (Kernel SVM)

• Multiclass SVM

– One-versus-one

– One-versus-rest

• Practical issues



Support Vector Machine

Main references
• Olga Veksler’s lecture

http://www.csd.uwo.ca/~olga/Courses/CS434a_541a/
Lecture11.pdf

• Jeff Howbert’s lecture

http://courses.washington.edu/css581/lecture_slides/
16_support_vector_machines.pdf

• Chris Burges’ tutorial

http://research.microsoft.com/pubs/67119/svmtutorial.pdf
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Support Vector Machine

What is SVM?
Recall that both LDA and Logistic regression are obtained from probabilistic
models:

• Mixture of Gaussians 7→ LDA

• Bernoulli/multinomial 7→ Logistic regression

We also know that their decision boundaries (in the input space) are hyperplanes
(thus, they are linear classifiers).

SVM is another linear classifier but seeks to find an ‘optimal ’ boundary.

It was invented by Vapnik (during the end of last century) and considered one of
the major developments in pattern recognition.
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Binary SVM: Linearly separable (no outliers)
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Support Vector Machine

Support Vector Machine (SVM)
To introduce the idea of SVM, we consider binary classification first.
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SVM effectively compares (under some criterion) all hyperplanes w · x + b = 0,
where w is a normal vector while b determines location.
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Support Vector Machine

The following specifies how to logically think about the problem:

• Any fixed direction w determines a unique margin.
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Support Vector Machine

• We select b such that the center hyperplane is given by w · x + b = 0.
This is the optimal boundary orthogonal to the given direction w, as it is
equally far from the two classes.
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• Any scalar multiple of w and b denotes the same hyperplane. To uniquely
fix the two parameters, we require the margin boundaries to have equations
w · x + b = ±1.
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w · x+ b = 1

w · x + b = 0
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• Under such requirements, we can show that the margin between the two
classes is exactly 2

‖w‖2
.
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The larger the margin, the better the classifier
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The binary SVM problem
Problem. Given training data x1, . . . ,xn ∈ Rd with labels yi = ±1, SVM finds
the optimal separating hyperplane by maximizing the class margin.

Specifically, it tries to solve

max
w,b

2
‖w‖2

subject to

w · xi + b ≥ 1, if yi = +1;
w · xi + b ≤ −1, if yi = −1

Remark. The classification rule for new
data x is y = sgn(w · x + b).
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A more convenient formulation
The previous problem is equivalent to

min
w,b

1
2‖w‖

2
2 subject to yi(w · xi + b) ≥ 1 for all 1 ≤ i ≤ n.

This is an optimization problem with linear, inequality constraints.

Remarks:

• The constraints determine a convex region enclosed by hyperplanes.

• The objective function is quadratic (also convex).

• This problem thus has a unique global solution.
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Review of multivariable calculus

Consider the following constrained optimization problem

min f(x) subject to g(x) ≥ b

There are two cases regarding where the global minimum of f(x) is attained:

(1) At an interior point x∗ (i.e., g(x∗) > b). In this case x∗ is just a critical
point of f(x).
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g(x) = b

g(x) > b

b
∇f(x∗) = 0

Global min of f(x)
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(2) At a boundary point x∗ (i.e., g(x∗) = b). In this case, there exists a constant
λ > 0 such that ∇f(x∗) = λ · ∇g(x∗).

g(x) = b

g(x) > b

bb b

∇f(x∗)

∇g(x∗)

diretion of increase

contour curves of f(x)

Global min of f(x)

x∗
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The above two cases are unified by the method of Lagrange multipliers:

• Form the Lagrange function

L(x, λ) = f(x)− λ(g(x)− b)

• Find all critical points by solving

∇xL = 0 : ∇f(x) = λ∇g(x)
λ(g(x)− b) = 0

λ ≥ 0
g(x) ≥ b

Remark. The solutions give all candidate points for the global minimizer
(one needs to compare them and pick the best one).
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Remarks:

• The above equations are called Karush-Kuhn-Tucker (KKT) conditions.

• When there are multiple inequality constraints

min f(x) subject to g1(x) ≥ b1, . . . , gk(x) ≥ bk

the method works very similarly:
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– Form the Lagrange function

L(x, λ1, . . . , λk) = f(x)− λ1(g1(x)− b1)− · · · − λk(gk(x)− bk)

– Find all critical points by solving

∇xL = 0 : ∂L

∂x1
= 0, . . . , ∂L

∂xn
= 0

λ1(g1(x)− b1) = 0, . . . , λk(gk(x)− bk) = 0
λ1 ≥ 0, . . . , λk ≥ 0

g1(x) ≥ b1, . . . , gk(x) ≥ bk

and compare them to pick the best one.
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Lagrange method applied to binary SVM
• The Lagrange function is

L(w, b, λ1, . . . , λn) = 1
2‖w‖

2
2 −

n∑
i=1

λi(yi(w · xi + b)− 1)

• The KKT conditions are

∂L

∂w = w−
∑

λiyixi = 0, ∂L

∂b
=
∑

λiyi = 0

λi(yi(w · xi + b)− 1) = 0, ∀i
λi ≥ 0, ∀i

yi(w · xi + b) ≥ 1, ∀i
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Discussions

• The first condition implies that the optimal w is a linear combination of
the training vectors:

w =
∑

λiyixi

• The second line implies that whenever yi(w · xi + b) > 1 (i.e., xi is an
interior point), we have λi = 0. Therefore, the optimal w is only a linear
combination of the support vectors (i.e., those satisfying yi(w ·xi+b) = 1).

• The optimal b can be found from any support vector xi (with λi > 0):

b = 1
yi
−w · xi = yi −w · xi
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The Lagrange dual problem

min f(x) s.t. gi(x) ≥ bi

∂L
∂x = 0

gi(x) ≥ bi

λi ≥ 0

λi(gi(x)− bi) = 0KKT

Primal problem

Conditions

L(x, ~λ) = f(x)− ∑
λi(gi(x)− bi)

L∗(~λ) = minx L(x, ~λ)

max L∗(~λ) s.t. λi ≥ 0

Lagrange dual function

Lagrange function

Lagrange dual problem
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For binary SVM, the primal problem is

min
w,b

1
2‖w‖

2
2 subject to yi(w · xi + b) ≥ 1 for all i.

The associated Lagrange function is

L(w, b, λ1, . . . , λn) = 1
2‖w‖

2
2 −

n∑
i=1

λi(yi(w · xi + b)− 1)

By definition, the Lagrange dual function is

L∗(λ1, . . . , λn) = min
w,b

L(w, b, λ1, . . . , λn), λ1 ≥ 0, . . . , λn ≥ 0
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To find the minimum of L over w, b (while fixing all λi), we set the gradient
vector to zero to obtain

w =
∑

λiyixi,
∑

λiyi = 0

Plugging the formula for w into L gives that

L∗(λ1, . . . , λn) = 1
2

∥∥∥∥∥∑
i

λiyixi

∥∥∥∥∥
2

2

−
∑
i

λi

yi
∑

j

λjyjxj

 · xi + b

− 1


=
∑
i

λi −
1
2
∑
i

∑
j

λiλjyiyjxi · xj

with the constraints
λi ≥ 0,

∑
λiyi = 0
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We have obtained the Lagrange dual problem for binary SVM (without outliers)

max
λ1,...,λn

∑
λi −

1
2
∑
i,j

λiλjyiyjxi · xj

subject to λi ≥ 0 and
∑

λiyi = 0

Remarks:

• The primal and dual problems are equivalent.

• The dual problem only depends on the number of samples (one λ per xi),
not on their dimension.

• The dual problem can also be solved by quadratic programming.

• Samples appear only through their dot products xi · xj , an observation to
be exploited for designing nonlinear SVM classifiers.
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Quadratic programming in Matlab

‘quadprog’ - Quadratic programming function (requires Optimization toolbox).

x = quadprog(H,f,A,b) attempts to solve the quadratic programming problem:

min
x

1
2 · x

T ·H · x + fT · x subject to : A · x ≤ b

x = quadprog(H,f,A,b,Aeq,beq) solves the problem above while additionally
satisfying the equality constraints Aeq · x = beq.
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Binary SVM via quadratic programming
In order to use the Matlab quadprog function, we first need to transfrom the
previous formulation to the standard form

min
λ1,...,λn

1
2
∑
i,j

λiλjyiyjxi · xj −
∑

λi

subject to − λi ≤ 0 and
∑

λiyi = 0

and then matrice/vectorize it:

min
~λ

1
2
~λTH~λ+ fT~λ

subject to A~λ ≤ b and Aeq~λ = beq
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Binary SVM: Linearly separable with outliers
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What is the optimal separating line?
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(Left: not linearly separable; right: linearly separable but quite weakly)
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What is the optimal separating line?

b

b

b
b

b

b

b Class -1Class 1

bc

b

b

b
b

b

b

b Class -1Class 1

bc

(Both data sets are much better linearly separated if several points are ignored).

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 32/73



Support Vector Machine

Introducing slack variables

To find a linear boundary with a large
margin, we must allow violations of the
constraint yi(w · xi + b) ≥ 1.

That is, we allow a few points to fall
within the margin. They will satisfy

yi(w · xi + b) < 1

There are two cases:

• yi = +1: w · xi + b < 1;

• yi = −1: w · xi + b > −1.

b
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w · x+ b = 1

w · x+ b = −1
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b
b

b

b
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Formally, we introduce slack variables ξ1, . . . , ξn ≥ 0 (one for each sample) to
allow for exceptions:

yi(w · xi + b) ≥ 1− ξi, ∀ i

where ξi = 0 for the points in ideal locations, and ξi > 0 for the violations
(chosen precisely so that the equality will hold true):

• 0 < ξi < 1: Still on correct side of hyperplane but within the margin

• ξi > 1: Already on wrong side of hyperplane

We say that such an SVM has a soft margin to distinguish from the previous
hard margin.
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Because we want most of the points to be in ideal locations, we incorporate the
slack variables into the objective function as follows

min
w,b,~ξ

1
2‖w‖

2
2 + C ·

∑
i

1ξi>0︸ ︷︷ ︸
# exceptions

where C > 0 is a regularization constant:

• Larger C leads to fewer exceptions (smaller margin, possible overfitting).

• Smaller C tolerates more exceptions (larger margin, possible underfitting).

Clearly, there must be a tradeoff between margin and #exceptions when selecting
the optimal C (often based on cross validation).
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`1 relaxation of the penalty term
The discrete nature of the penalty term on previous slide,

∑
i 1ξi>0 = ‖~ξ‖0,

makes the problem intractable.

A common strategy is to replace the `0 penalty with a `1 penalty:
∑
i ξi = ‖~ξ‖1,

resulting in the following full problem

min
w,b,~ξ

1
2‖w‖

2
2 + C ·

∑
i

ξi

subject to yi(w · xi + b) ≥ 1− ξi and ξi ≥ 0 for all i.

Remarks:
(1) Also a quadratic program with linear ineq. constraints (just more variables):
yi(w · xi + b) + ξi ≥ 1.
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(2) The problem may be rewritten as an unconstrained optimization problem

min
w,b

1
2‖w‖

2
2︸ ︷︷ ︸

regularization

+ C ·
n∑
i=1

max(0, 1− yi(w · xi + b))︸ ︷︷ ︸
hinge loss

t = y(w · x+ b)
10

Hinge loss

Separating
hyperplane

Margin
boundary

1

L(t) = max(0, 1− t)

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 39/73



Support Vector Machine

Remark. There is a close connection to the `2-regularized logistic regression:

min
~θ

C‖~θ‖2
2︸ ︷︷ ︸

regularization

−
n∑
i=1

yi log p(xi; ~θ) + (1− yi) log(1− p(xi; ~θ))︸ ︷︷ ︸
logistic loss

0 1
0

1

2

3

logistic loss
hinge loss
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The Lagrange dual problem
The associated Lagrange function is

L(w, b, ~ξ, ~λ, ~µ) = 1
2‖w‖

2
2 +C

n∑
i=1

ξi −
n∑
i=1

λi(yi(w · xi + b)− 1 + ξi)−
n∑
i=1

µiξi

To find the dual problem we need to fix ~λ, ~µ and maximize over w, b, ~ξ:

∂L

∂w = w−
∑

λiyixi = 0

∂L

∂b
=
∑

λiyi = 0

∂L

∂ξi
= C − λi − µi = 0, ∀ i
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This yields the Lagrange dual function

L∗(~λ, ~µ) =
∑

λi −
1
2
∑

λiλjyiyjxi · xj , where

λi ≥ 0, µi ≥ 0, λi + µi = C, and
∑

λiyi = 0.

The dual problem would be to maximize L∗ over ~λ, ~µ subject to the constraints.

Since L∗ is constant with respect to the µi, we can eliminate them to obtain a
reduced dual problem:

max
λ1,...,λn

∑
λi −

1
2
∑
i,j

λiλjyiyjxi · xj

subject to 0 ≤ λi ≤ C︸ ︷︷ ︸
box constraints

and
∑

λiyi = 0.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 42/73



Support Vector Machine

What about the KKT conditions?
The KKT conditions are the following

w =
∑

λiyixi,
∑

λiyi = 0, λi + µi = C

λi(yi(w · xi + b)− 1 + ξi) = 0, µiξi = 0
λi ≥ 0, µi ≥ 0

yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0

We see that

• The optimal w has the same formula: w =
∑
λiyixi.

• Any point with λi > 0 and correspondingly yi(w · x + b) = 1 − ξi is a
support vector (not just those on the margin boundary w · x + b = ±1).
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b

w · x + b = 0

w · x+ b = 1

w · x+ b = −1

yi(w · xi + b) ≥ 1− ξi, ∀ i

b

bc
b

b

b

b Class -1Class 1

bc

ξi > 1

0 < ξi < 1

(ξi = 0)

0 < ξi < 1

(ξi = 0)

• To find b, choose any support vector xi with 0 < λi < C (which implies
that µi > 0 and ξi = 0), and use the formula b = 1

yi
−w · xi.
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Binary SVM via quadratic programming
Again, we first need to transform the previous formulation to the standard form

min
λ1,...,λn

1
2
∑
i,j

λiλjyiyjxi · xj −
∑

λi

subject to − λi ≤ 0, λi ≤ C, and
∑

λiyi = 0

and then matrice/vectorize it:

min
~λ

1
2
~λTH~λ+ fT~λ

subject to A~λ ≤ b and Aeq~λ = beq

Note. Both A,b are twice as tall as before (the other variables remain the same).
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Binary SVM: Nonlinearly separable, with outliers
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Feature map
When the classes are nonlinearly separable, a transformation of the data (both
training and test) is often used (so that the training classes in the new space
becomes linearly separable):

Φ : xi ∈ Rd 7→ Φ(xi) ∈ R`

where often `� d, and sometimes ` =∞.

• The function Φ is called a feature map,

• The target space R` is called a feature space, and

• The images Φ(xi) are called feature vectors.
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The kernel trick
In principle, once we find a good feature map Φ : Rd → R` we just need to work
in the new space to build a binary SVM model and classify test data (after being
transformed in the same way):

• SVM in feature space

min
w,b,~ξ

1
2‖w‖

2
2 + C

∑
ξi subject to

yi(w · Φ(xi) + b) ≥ 1− ξi, and ξi ≥ 0 for all i.

• Decision rule for test data x

y = sgn(w · Φ(x) + b)
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However, in many cases the feature space is very high dimensional, making
computing intensive.

We can apply a kernel trick thanks to the Lagrange dual formulation of SVM:

max
λ1,...,λn

∑
λi −

1
2
∑
i,j

λiλjyiyj Φ(xi) · Φ(xj)︸ ︷︷ ︸
:=κ(xi,xj)

subject to 0 ≤ λi ≤ C and
∑

λiyi = 0

That is to specify only the dot product function κ of the feature space, called a
kernel function and avoid explicitly using the feature map Φ.

In the toy example, Φ(x) = (x, ‖x‖2
2), and κ(x, x̃) = x · x̃ + ‖x‖2

2 · ‖x̃‖2
2.
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Can the decision rule also avoid the explicit use of Φ?

y = sgn(w · Φ(x) + b)

The answer is yes, because w is a linear combination of the support vectors in
the feature space:

w =
∑

λiyiΦ(xi)

and so is b (for any support vector Φ(xi0) with 0 < λi0 < C):

b = yi0 −w · Φ(xi0)

Consequently,

y = sgn
(∑

λiyiκ(xi,x) + b
)
, where b = yi0 −

∑
λiyiκ(xi,xi0)
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Steps of kernel SVM
• Pick a kernel function κ (which corresponds to some feature map Φ)

• Solve the following quadratic program

max
λ1,...,λn

∑
i

λi −
1
2
∑
i,j

λiλjyiyjκ(xi,xj)

subject to 0 ≤ λi ≤ C and
∑

λiyi = 0

• Classify new data x based on the following decision rule:

y = sgn
(∑

λiyiκ(xi,x) + b
)

where b can be determined from any support vector with 0 < λi < C.
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What are good kernel functions?
• Linear (= no kernel, just regular SVM)

κ(x, x̃) = x · x̃

• Polynomial (of degree p ≥ 1)

κ(x, x̃) = (1 + x · x̃)p

• Gaussian (also called Radial Basis Function, or RBF)

κ(x, x̃) = e−‖x−x̃‖2
2/(2σ2) = e−γ‖x−x̃‖2

2

• Sigmoid (also called Hyperbolic Tangent)

κ(x, x̃) = tanh(γx · x̃ + r)
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The MATLAB ‘fitcsvm’ function for binary SVM

% SVM training with different kernels

SVMModel = fitcsvm(trainX, Y, ’BoxConstraint’, 1, ’KernelFunc-
tion’, ‘linear’) % both are default values

SVMModel = fitcsvm(trainX, Y, ’BoxConstraint’, 1, ’KernelFunc-
tion’, ‘gaussian’, ’KernelScale’, 1) % ’KernelFunction’ may be set to
‘rbf’. ‘KernelScale’ is the sigma parameter (default = 1)

SVMModel = fitcsvm(trainX, Y, ’BoxConstraint’, 1, ’KernelFunc-
tion’, ‘polynomial’, ’PolynomialOrder’, 3) % default order = 3
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% SVM validation (important for parameter tuning)

CVSVMModel = crossval(SVMModel); % 10-fold by default

kloss = kfoldLoss(CVSVMModel);

% SVM testing

pred = predict(SVMModel, testX);
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Experiments
• The polynomial kernel

– C: margin parameter

– p: degree of polynomial (shape parameter)

• The Gaussian kernel (see plot on next slide)

– C: margin parameter

– σ (or γ): smoothness parameter
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Practical issues
• Scaling: SVM often requires to rescale each dimension (pixel in our case)

linearly to an interval [0,1] or [-1,1], or instead standardizes it to zero mean,
unit variance.

• High dimensional data: Training is expensive and tends to overfit the
data when using flexible kernel SVMs (such as Gaussian or polynomial).
Dimensionality reduction by PCA is often needed.

• Hyper-parameter tuning

– The tradeoff parameter C (for general SVM)

– Kernel parameter: γ = 1
2σ2 (Gaussian), p (polynomial)
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Parameter estimation for Gaussian-kernel SVM

GkSVM is a powerful, general-purpose
kernel, but there is a practical difficulty
in tuning γ (or σ) and C.

Typically, it is tuned by cross validation
in a grid search fashion:

γ = 2−15, 2−14, . . . , 23, and
C = 2−5, 2−4, . . . , 215

One popular, efficient implementation
is LIBSVM: https://www.csie.ntu.
edu.tw/~cjlin/libsvm/
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Wea set the parameter σ in the Gaussian
kernel

κ(xi,xj) = e−
‖xi−xj‖

2
2

2σ2

directly based on training data:

σ = 1
n

n∑
i=1
‖xi − kNN(xi)‖2

where kNN(xi) is the kth nearest neigh-
bor of xi within its own training class.b

b

b

b
b

b

b

b Class -1Class 1

xi

kNN(xi) σ = 1
n

∑ ‖xi − kNN(xi)‖2

aG. Chen, W. Florero-Salinas, and D. Li (2017), “Simple, Fast and Accurate Hyper-
parameter Tuning in Gaussian-kernel SVM”, Intl. Joint Conf. on Neural Networks

bWhen n is large, we may use only a small, randomly selected subset of training data
to estimate σ, leading to a stochastic algorithm.
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Grid search method vs. kNN tuning (for k = 3)
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Multiclass extensions
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Multiclass SVM
Like logistic regression, binary SVM can be extended to a multiclass setting in
one of the following ways:

b
b
b b

b
b

b
b
b b

b
b

One-versus-one extension One-versus-rest extension
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In either case, the “maximally winning” class is adopted as the final prediction:

• For one-versus-one multiclass SVM, the final prediction for a test point is
the most frequent label predicted;

• For one-versus-rest multiclass SVM,

– The reference classes are assigned label 1 (the rest with label -1)

– For each binary model, record the ‘score’: w(i) · x + b(i) (not the
predicted label)

– The final prediction is the reference class with the largest (positive)
score

y = arg max
i

w(i) · x + b(i)
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Matlab implementation for Multiclass SVM
The previously mentioned function, ‘fitcsvm’, is designed only for binary classifi-
cation. To use multiclass SVM, you have the following options:

• Implement one-versus-one and one-versus-rest on your own (note that you
have already done this for logistic regression)

• Use the Matlab function ‘fitcecoc’:
temp = templateSVM(‘BoxConstraint’, 1, ‘KernelFunction’, ‘gaus-
sian’, ‘KernelScale’, 1); % Gaussian kernel SVM
temp = templateSVM(‘BoxConstraint’, 1, ‘KernelFunction’, ‘poly-
nomial’, ‘PolynomialOrder’, 3); % polynomial kernel SVM
Mdl = fitcecoc(trainX,Y,’Coding’,’onevsone’,‘learners’,temp);
Mdl = fitcecoc(trainX,Y,’Coding’,’onevsall’,‘learners’,temp);
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Python functions for SVM
See documentation at

• scikit-learn (http://scikit-learn.org/stable/modules/svm.html)

• LibSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)

Remarks:

• scikit-learn uses LibSVM to handle all computations, so the two should be
the same thing.

• LibSVM contains an efficient, grid-search based Matlab implementation
for SVM (including the multiclass extensions).
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Summary
• Binary SVM (hard/soft margin, and kernel) and multiclass extensions

• Advantages:

– Based on nice theory

– Excellent generalization properties

– Globally optimal solution

– Can handle outliers and nonlinear boundary simultaneously

• Disadvantage: SVM might be slower than some other methods due to
parameter tuning and quadratic programming
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HW6 (due Nov 15, Thursday noon)
1. This question concerns the application of the binary linear soft-margin

SVM classifier to the data used in HW4-Q5. Do the following:

(1a) Use 5-fold cross validation to select the optimal value of C from
{2−6, 2−5, . . . , 24}

(1b) Apply the binary classifier with the value of C determined in part (a)
to the data and compare with LDA and Logistic Regression in terms
of decision boundary and test accuracy.

2. Repeat Question 1 with the quadratic polynomial kernel SVM by comparing
it with the QDA classifier using the same criteria.
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3. Apply each of the three binary kernel SVM classifiers - linear, quadratic
polynomial, and cubic polynomial - with all values of C = 2−6, 2−5, . . . , 24

directly to the following subsets of the USPS data set separately:
(a) 0, 1 (b) 1, 7 (c) 4, 9.

For each subset, plot three test error curves (against C), one for each
classifier. Because of the high dimensionality of the data, you may want
to perform PCA (95% or a better choice) on each subset of digits before
you apply the SVM classifiers.

4. Apply the binary Gaussian kernel SVM classifier to the same three subsets
of USPS digits above (after PCA) with your own choices of σ and C. Try
different combinations of values of the two parameters so as to get a “low”
test error for each subset. Report your parameter values and corresponding
test error rates.
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5. (Extra credit questions). You must type your work.

(5a) Solve the following constrained optimization problem by hand:

min
x,y

y − x2 subject to 4− x2 − y2 ≥ 0

(5b) First find the Lagrange dual of the following (primal) problem

min
x

1
2x

2 subject to 2x− 1 ≥ 0

and then verify that the two problems have the same solution.
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HW7 (due Wed noon, Nov 21)
This is a group assignment (meaning you can collaborate with a partner and hand
in just one submission).

This homework focuses on the multiclass SVM classifier. In all questions below
try different values of C = 2−4, 2−3, . . . , 25 (no validation is needed).

1. Apply the one-vs-one multiclass linear SVM classifier to the USPS digits
(after PCA 95%). Plot the test errors against the different values of
C. How does it compare with the one-vs-one extension of the logistic
regression classifier?

2. Implement the one-versus-one extension of the third-degree polynomial
kernel SVM classifier and apply it to the USPS digits (after PCA 95%).
Plot the test errors against C.
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3. Repeat Question 2 with the one-versus-rest extension instead. Which
extension is better?

4. Implement the one-versus-one extension of the Gaussian kernel SVM
classifier and apply it to the USPS digits (after PCA 95%). To set the
kernel parameter σ, use a random sample of 100 points with k = 7 (or a
better choice). Report the value of σ you got and plot the corresponding
test errors against C. How does it compare with weighted kNN classifier
with Gaussian weights using the same σ and various k between 3 and 10?

5. Repeat Question 4 with the one-versus-rest extension instead. Which
extension is better?
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