
LEC 8: Artificial Neural Networks (ANN)

Guangliang Chen

November 26, 2018

Outline

• Overview

– What is a neural network

– What is a neuron

• Perceptrons

• Sigmoid neurons network

• Summary

Artificial Neural Networks

Acknowledgments

This presentation is based on the following references:

• Michael Nielsen’s book “Neural Networks and Deep Learning” at

http://neuralnetworksanddeeplearning.com

• Olga Veksler’s lecture on neural networks at

http://www.csd.uwo.ca/courses/CS9840a/Lecture10_NeuralNets.pdf

Guangliang Chen | Mathematics & Statistics, San José State University 3/69

http://neuralnetworksanddeeplearning.com
http://www.csd.uwo.ca/courses/CS9840a/Lecture10_NeuralNets.pdf

Artificial Neural Networks

What is an artificial neural network?

b
b
b

x1

x2

xd

y2

y1

yk

b
b
b

Input layer Hidden layer(s) Output layer The leftmost layer inputs features xi.

The rightmost layer outputs approxima-
tions to predictions yi.

The solid circles represent neurons,
which process inputs from preceding
layer and output results for next layer.

The network may have > 1 hidden layer
(shallow/deep network).

Guangliang Chen | Mathematics & Statistics, San José State University 4/69

Artificial Neural Networks

ANN for MNIST handwritten digits recognition

b
b
b

x1

x2

xd

1

0

9

b
b
b

Input layer Hidden layer(s) Output layer

784 pixels
10 classes

abstraction

Guangliang Chen | Mathematics & Statistics, San José State University 5/69

Artificial Neural Networks

What is a biological neuron?
• Neurons (or nerve cells) are special cells that process and transmit infor-

mation by electrical signaling (in brain and also spinal cord)

• Human brain has around 1011 neurons

• A neuron connects to other neurons to form a network

• Each neuron cell communicates to between 1000 and 10,000 other neurons

Guangliang Chen | Mathematics & Statistics, San José State University 6/69

Artificial Neural Networks

Components of a biological neuron

dendrites:

• “input wires”, receive inputs
from other neurons

• a neuron may have thousands of
dendrites, usually short

cell body: computational unit

axon:

• “output wire”, sends signal to
other neurons

• single long structure (up to 1 m)

• splits in possibly thousands of
branches at the end

Guangliang Chen | Mathematics & Statistics, San José State University 7/69

Artificial Neural Networks

Artificial neurons are mathematical functions

x1

x2

xd

w1

w2

wd

b

f

b
b
b

f(w · x + b)

In the above,

• wi: weights, b: bias, and f : activation function

Guangliang Chen | Mathematics & Statistics, San José State University 8/69

Artificial Neural Networks

Two simple activation functions
• Heaviside step function: H(z) = 1z>0

• Sigmoid: σ(z) = 1
1+e−z

z
-3 -2 -1 0 1 2 3

0

0.5

1
Heaviside H(z)
Sigmoid σ(z)

The corresponding neurons are called perceptrons and sigmoid neurons, resp.

We will mention several other activation functions in the end.

Guangliang Chen | Mathematics & Statistics, San José State University 9/69

Artificial Neural Networks

ANN is a composition of functions!

• Each neuron is a function

• It accepts inputs from previous
layer and outputs for next layer

It can be proved that every continuous
function can be implemented with 1
hidden layer (containing enough hidden
units) and proper nonlinear activation
functions.

This is more of theoretical than practical
interest.

b
b
b

x1

x2

xd

y2

y1

yk

b
b
b

Input layer Hidden layer(s) Output layer

Guangliang Chen | Mathematics & Statistics, San José State University 10/69

Artificial Neural Networks

How to train ANNs in principle
1. Select an activation function for all neurons.

2. Tune weights and biases at all neurons to match prediction and truth “as
closely as possible”:

• formulate an objective or loss function L

• optimize it with gradient descent

– the technique is called backpropagation

– lots of notation due to complex from of gradient

– lots of tricks to get gradient descent work reasonably well

Guangliang Chen | Mathematics & Statistics, San José State University 11/69

Artificial Neural Networks

Perceptrons
A perceptron is a neuron whose activation function is the Heaviside step function.
It defines a linear, binary classifier (not necessarily optimal).

x1

x2

xd

w1

w2

wd

b

b
b
b

sgn(w · x + b)

b

b

b

b

b
b

b

b

b

b

b
b

b-1
1

b

b

w · x + b = 0

Guangliang Chen | Mathematics & Statistics, San José State University 12/69

Artificial Neural Networks

Derivation of the Perceptron loss function

• If a point xi is misclassified, then
yi(w ·xi + b) < 0 (implying that
−yi(w · xi + b) > 0, which can
be regarded as penalty/loss).

⊗
b

b

b

b
⊗

b

b

⊗

b

b
b

b

w · x + b = 0

-1
1

b

b

• Denote the set of misclassified
points byM.

• The goal is to minimize the total
loss

`(w, b) = −
∑
i∈M

yi(w · xi + b)

• If ` gets to zero, we know we
have the best possible solution
(M empty → no training error)

Guangliang Chen | Mathematics & Statistics, San José State University 13/69

Artificial Neural Networks

How to minimize the perceptron loss

The perceptron loss contains a discrete object (i.e. M) that depends on the
variables w, b, making it hard to solve analytically.

To obtain an approximate solution, use gradient descent:

• Initialize weights w and bias b (which would determineM).

• Iterate until stopping criterion is met

Guangliang Chen | Mathematics & Statistics, San José State University 14/69

Artificial Neural Networks

– Given M: The gradient may be computed as follows

∂`

∂w = −
∑
i∈M

yixi

∂`

∂b
= −

∑
i∈M

yi

We then update w, b as follows:

w←− w + ρ
∑
i∈M

yixi

b←− b+ ρ
∑
i∈M

yi

where ρ > 0 is a parameter, called learning rate.

Guangliang Chen | Mathematics & Statistics, San José State University 15/69

Artificial Neural Networks

Interpretation:

∗ Since
∑

i∈M yi > 0 (<0) if there are more errors in the positive
(negative) class, b will be modified to fix the errors in the
corresponding class.

∗ For any j ∈M,

w · xj ←− w · xj + ρyj‖xj‖2
2 +

∑
i∈M−{j}

yi(xi · xj)

– Given w, b: updateM as the set of new errors:

M = {1 ≤ i ≤ n | yi(w · xi + b) < 0}

Guangliang Chen | Mathematics & Statistics, San José State University 16/69

Artificial Neural Networks

⊗
b

b

b

b
⊗

b

b

⊗

b

b
b

b-1
1

b

b

b

b

b

b

b
b

b

b

b

b

b
b

b-1
1

b

b

gradient descent

(Computer demonstration)

Guangliang Chen | Mathematics & Statistics, San José State University 17/69

Artificial Neural Networks

How to set the learning rate ρ

• Can adjust ρ at the training time

• The loss function `(w, b) should decrease during gradient descent

– If `(w, b) oscillates: ρ is too large, decrease it

– If `(w, b) goes down but very slowly: ρ is too small, increase it

Guangliang Chen | Mathematics & Statistics, San José State University 18/69

Artificial Neural Networks

Stochastic gradient descent
The gradient descent approach we use so far assumes that we have access to the
full training set, and uses all training data to iteratively update weights and bias.

This may be slow for large data sets, or impractical in the setting of online learning
(where data comes sequentially).

A variant of gradient descent, called stochastic gradient descent, uses

• only a single training point, or

• a small subset of examples (called mini-batch),

each round to update weights and bias.

Guangliang Chen | Mathematics & Statistics, San José State University 19/69

Artificial Neural Networks

• Single-sample update rule:

– Start with a random hyperplane (with corresponding w and b)

– Randomly select a new point xi from the training set: if it lies on
the correct side, no change; otherwise update

w←− w + ρyixi

b←− b+ ρyi

– Repeat until all examples have been visited (this is called an epoch)

Guangliang Chen | Mathematics & Statistics, San José State University 20/69

Artificial Neural Networks

• Mini-batch update rule:

– Divide training data into mini-batches (of size 5, or 10), and update
weights after processing each mini-batch

w←− w +
∑

ρyixi

b←− b+ ρ
∑

yi

– Middle ground between single sample and full training set

– One iteration over all mini-batches is called an epoch

Guangliang Chen | Mathematics & Statistics, San José State University 21/69

Artificial Neural Networks

Comments on stochastic gradient descent
• Single-sample update rule applies to online learning

• Faster than full gradient descent, but maybe less stable

• Batch update rule might achieve some balance between speed and stability

• May find only a local minimum (the hyperplane is trapped in a suboptimal
location)

(Click here to see pictures)

Guangliang Chen | Mathematics & Statistics, San José State University 22/69

https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3

Artificial Neural Networks

Some remarks about the Perceptron algorithm
• If the classes are linearly separable, the algorithm converges to a separating

hyperplane in a finite number of steps, but not necessarily optimal.

• The number of steps can be very large. The smaller the margin (between
the classes), the longer it takes to find it.

• When the data are not separable, the algorithm will not converge, and
cycles develop (which can be long and therefore hard to detect).

• It is thus not a good classifier, but it is conceptually very important (neuron,
loss function, gradient descent).

Guangliang Chen | Mathematics & Statistics, San José State University 23/69

Artificial Neural Networks

Multilayer perceptrons (MLP)

b
b
b

x1

x2

xd

y2

y1

yk

b
b
b

Input layer Hidden layer(s) Output layer MLP is a network of perceptrons.

However, each perceptron has a dis-
crete behavior, making its effect on
latter layers hard to predict.

Next we will look at the network of sig-
moid neurons.

Guangliang Chen | Mathematics & Statistics, San José State University 24/69

Artificial Neural Networks

Sigmoid neurons

Sigmoid neurons are smoothed-out (or
soft) versions of the perceptrons:

A small change in any weight or bias
causes only a small change in the out-
put.

We say the neuron is in low (high) acti-
vation if the output is near 0 (1).

When the neuron is in high activation,
we say that it fires.

σ(w · x + b) = 1
1 + e−(w·x+b)

x1

x2

xd

w1

w2

wd

b

b
b
b

σ(w · x+ b)

Guangliang Chen | Mathematics & Statistics, San José State University 25/69

Artificial Neural Networks

The sigmoid neurons network
The output of such a network continuously depends on its weights and biases (so
everything is more predictable comparing to the MLP).

b
b
b

x1

x2

xd

y2

y1

yk

b
b
b

Input layer Hidden layer(s) Output layer

Guangliang Chen | Mathematics & Statistics, San José State University 26/69

Artificial Neural Networks

How do we train a neural network?

• Notation, notation, notation

• Backpropagation

• Practical issues and solutions

Guangliang Chen | Mathematics & Statistics, San José State University 27/69

Artificial Neural Networks

Notation

w`
jk: layer `, “j back to k” weight;

b`
j : layer `, neuron j bias

a`
j : layer `, neuron j output

z`
j =

∑
k w

`
jka

`−1
k + b`

j : weighted input
to neuron j in layer `

Note that a`
j = σ(z`

j).

b b b

neuron k

b bb

layer ℓ− 1 layer ℓ layer L

neuron j
wℓ
jk

bℓj

zℓj aℓj
σ

neuron j

Guangliang Chen | Mathematics & Statistics, San José State University 28/69

Artificial Neural Networks

Notation (vector form)

W` =
(
w`

jk

)
j,k

: matrix of all weights
between layers `− 1 and `;

b` =
(
b`

j

)
j
: vector of biases in layer `

z` =
(
z`

j

)
j
: vector of weighted inputs

to neurons in layer `

a` =
(
a`

j

)
j
: vector of outputs from

neurons in layer `

We write a` = σ
(
z`
)
(componentwise).

b b b

neuron k

b bb

layer ℓ− 1 layer ℓ layer L

neuron j
wℓ
jk

bℓj

aℓ−1

σ zℓ aℓσ

Wℓ,bℓ

b bb
aL

b b b

Guangliang Chen | Mathematics & Statistics, San José State University 29/69

Artificial Neural Networks

The feedforward relationship

First note that

• Input layer is indexed by ` = 0
so that a0 = x.

• aL is the network output.

For each 1 ≤ ` ≤ L,

a` = σ(W`a`−1 + b`︸ ︷︷ ︸
=z`

).

b b b

neuron k

b bb

layer ℓ− 1 layer ℓ layer L

neuron j
wℓ
jk

bℓj

aℓ−1

σ zℓ aℓσ

Wℓ,bℓ

b bb
aL

b b b

Guangliang Chen | Mathematics & Statistics, San José State University 30/69

Artificial Neural Networks

The network loss
To tune the weights and biases of a network of sigmoid neurons, we need to select
a loss function.

We first consider the square loss due to its simplicity

C({W`,b`}1≤`≤L) = 1
2n

n∑
i=1
‖aL(xi)− yi‖2

where

• aL(xi) is the network output when inputing a training example xi.

• yi is the training label (coded by a vector).

Guangliang Chen | Mathematics & Statistics, San José State University 31/69

Artificial Neural Networks

Remark. In our setting, the labels are coded as follows:

digit 0 =

1
0
...
0

 , digit 1 =

0
1
...
0

 , . . . ,digit 9 =

0
0
...
1

Therefore, by varying the weights and biases, we try to minimize the difference
between each network output aL(xi) and one of the vectors above (associated
to the training class that xi belongs to).

Guangliang Chen | Mathematics & Statistics, San José State University 32/69

Artificial Neural Networks

Gradient descent
The network loss has too many variables to be minimized analytically:

C({W`,b`}1≤`≤L) = 1
2n

n∑
i=1
‖aL(xi)− yi‖2

We’ll use gradient descent to attack the problem. However, computing all the
partial derivatives ∂C

∂w`
jk

, ∂C
∂b`

j

is highly nontrivial.

To simplify the task a bit, we consider a sample of size 1 consisting of only xi:

Ci({W`,b`}1≤`≤L) = 1
2‖a

L(xi)− yi‖2 = 1
2
∑

j

(aL
j − yi(j))2

which is enough as ∂C
∂w`

jk

= 1
n

∑
i

∂Ci

∂w`
jk

and ∂C
∂b`

j

= 1
n

∑
i

∂Ci

∂b`
j

.

Guangliang Chen | Mathematics & Statistics, San José State University 33/69

Artificial Neural Networks

The output layer first

We start by computing ∂Ci

∂wL
jk

, ∂Ci

∂bL
j

as
they are the easiest.

b b b

neuron k

layer L− 1 layer L (output layer)

neuron j

wL
jk

bLj

aLj

aL1

b

b

b

Ci

b b b

neuron k

b bb

layer ℓ− 1 layer ℓ layer L

neuron j
wℓ
jk

bℓj

aℓ−1

σ zℓ aℓσ

Wℓ,bℓ

b bb
aL

b b b

Guangliang Chen | Mathematics & Statistics, San José State University 34/69

Artificial Neural Networks

Computing ∂Ci

∂wL
jk
, ∂Ci

∂bL
j
for the output layer

By chain rule we have

∂Ci

∂wL
jk

= ∂Ci

∂aL
j

·
∂aL

j

∂wL
jk

where ∂Ci

∂aL
j

= aL
j − yi(j) for square loss

and

∂aL
j

∂wL
jk

=
∂aL

j

∂zL
j

·
∂zL

j

∂wL
jk

= σ′(zL
j)aL−1

k

which is obtained by applying chain rule
again with the formula for aL

j .

b b b

neuron k

layer L− 1 layer L (output layer)

neuron j

wL
jk

bLj

aLj

aL1

b

b

b

Ci

aL
j = σ

(
zL

j =
∑

k

wL
jka

L−1
k + bL

j

)

Guangliang Chen | Mathematics & Statistics, San José State University 35/69

Artificial Neural Networks

Computing ∂Ci

∂wL
jk
, ∂Ci

∂bL
j
for the output layer

Combining results gives that

∂Ci

∂wL
jk

= ∂Ci

∂aL
j

·
∂aL

j

∂wL
jk

=
(
aL

j − yi(j)
)
σ′(zL

j)aL−1
k .

Similarly, we obtain that

∂Ci

∂bL
j

= ∂Ci

∂aL
j

·
∂aL

j

∂bL
j

=
(
aL

j − yi(j)
)
σ′(zL

j).

b b b

neuron k

layer L− 1 layer L (output layer)

neuron j

wL
jk

bLj

aLj

aL1

b

b

b

Ci

aL
j = σ

(
zL

j =
∑
k′

wL
jk′a

L−1
k′ + bL

j

)

Guangliang Chen | Mathematics & Statistics, San José State University 36/69

Artificial Neural Networks

Interpretation of the formula for ∂Ci

∂wL
jk

Observe that the rate of change of Ci

w.r.t. wL
jk depends on three factors (∂Ci

∂bL
j

only depends on the first two):

• aL
j − yi(j): how much current

output is off from desired output

• σ′(zL
j): how fast the neuron re-

acts to changes of its input

• aL−1
k : contribution from neuron
k in layer L− 1

b b b

neuron k

layer L− 1 layer L (output layer)

neuron j

wL
jk

bLj

aLj

aL1

b

b

b

Ci

Thus, wL
jk will learn slowly if the input

neuron is in low-activation (aL−1
k ≈ 0),

or the output neuron has “saturated”,
i.e., is in either high- or low-activation
(in both cases σ′(zL

j) ≈ 0).

Guangliang Chen | Mathematics & Statistics, San José State University 37/69

Artificial Neural Networks

What about layer L− 1 (and further inside)?

b b b

neuron k

layer L− 1 output layer

neuron j

wL−1
kq

bL−1
k

aLj

aL1

b

b

b

Ci

neuron q

layer L− 2

aL−1
k

Guangliang Chen | Mathematics & Statistics, San José State University 38/69

Artificial Neural Networks

b b b

neuron k

layer L− 1 output layer

neuron j

wL−1
kq

bL−1
k

aLj

aL1

b

b

b

Ci

neuron q

layer L− 2

aL−1
k

By chain rule,

∂Ci

∂wL−1
kq

=
∑

j

∂Ci

∂aL
j

∂aL
j

∂wL−1
kq

=
∑

j

∂Ci

∂aL
j

∂aL
j

∂aL−1
k

∂aL−1
k

∂wL−1
kq

where

Guangliang Chen | Mathematics & Statistics, San José State University 39/69

Artificial Neural Networks

b b b

neuron k

layer L− 1 output layer

neuron j

wL−1
kq

bL−1
k

aLj

aL1

b

b

b

Ci

neuron q

layer L− 2

aL−1
k

• ∂Ci

∂aL
j

: already computed (in the output layer);

• ∂aL
j

∂aL−1
k

= σ′(zL
j)wL

jk: link between layers L and L− 1 ;

• ∂aL−1
k

∂wL−1
kq

: similarly computed as in the output layer

Guangliang Chen | Mathematics & Statistics, San José State University 40/69

Artificial Neural Networks

b b b

neuron k

layer L− 1 output layer

neuron j

aLj

aL1

b

b

b

Ci

layer ℓ + 1

aL−1
k

neuron p

wℓ
qr

bℓq
neuron q

layer ℓ

aℓ+1
p

aℓq

As we move further inside the network (from the output layer), we will need to
compute more and more links between layers:

∂Ci

∂w`
qr

=
∑

p,...,k,j

∂a`
q

∂w`
pq

∂a`+1
p

∂a`
q

. . .
∂aL

j

∂aL−1
k

∂Ci

∂aL
j

Guangliang Chen | Mathematics & Statistics, San José State University 41/69

Artificial Neural Networks

The backpropagation algorithm
The products of the link terms may be computed iteratively from right to left,
leading to an efficient algorithm for computing all ∂Ci

∂w`
jk

, ∂Ci

∂b`
j

(based on only xi):

• Feedforward xi to obtain all neuron inputs and outputs:

a0 = xi; a` = σ(W`a`−1 + b`), for ` = 1, . . . , L

• Backpropagate the network to compute

∂aL
j

∂a`
q

=
∑

p,...,k

∂a`+1
p

∂a`
q

. . .
∂aL

j

∂aL−1
k

, for ` = L, . . . , 1

Guangliang Chen | Mathematics & Statistics, San José State University 42/69

Artificial Neural Networks

The backpropagation algorithm (cont’d)
• Compute ∂Ci

∂w`
qr
, ∂Ci

∂b`
q
for every layer ` and every neuron q or pair of neurons

(q, r) by using

∂Ci

∂w`
qr

=
∑

j

∂a`
q

∂w`
qr

·
∂aL

j

∂a`
q

· ∂Ci

∂aL
j

∂Ci

∂b`
q

=
∑

j

∂a`
q

∂b`
q

·
∂aL

j

∂a`
q

· ∂Ci

∂aL
j

Note that ∂Ci

∂aL
j

only needs to computed once.

Remark. The entire backpropagation process can be vectorized, thus can be
implemented efficiently.

Guangliang Chen | Mathematics & Statistics, San José State University 43/69

Artificial Neural Networks

Stochastic gradient descent
• Initialize all the weights w`

jk and biases b`
j ;

• For each training example xi,

– Use backpropagation to compute the partial derivatives ∂Ci

∂w`
jk

, ∂Ci

∂b`
j

– Update the weights and biases by:

w`
jk ←− w`

jk − η ·
∂Ci

∂w`
jk

, b`
j ←− b`

j − η ·
∂Ci

∂b`
j

This completes one epoch in the training process.

• Repeat the preceding step until convergence.

Guangliang Chen | Mathematics & Statistics, San José State University 44/69

Artificial Neural Networks

Remark. The previous procedure uses single-sample update rule (one training
time each time). We can also use mini-batches {xi}i∈B to perform gradient
descent (for faster speed):

• For every i ∈ B, use backpropagation to compute the partial derivatives
∂Ci

∂w`
jk

, ∂Ci

∂b`
j

• Update the weights and biases by:

w`
jk ←− w`

jk − η ·
1
|B|

∑
i∈B

∂Ci

∂w`
jk

,

b`
j ←− b`

j − η ·
1
|B|

∑
i∈B

∂Ci

∂b`
j

Guangliang Chen | Mathematics & Statistics, San José State University 45/69

Artificial Neural Networks

Software for neural networks
MATLAB: Neural networks is not part of the MATLAB Statistics and Machine
Learning Toolbox; there is a separate Neural Networks Toolbox.

Python: Nielson has written from scratch excellent Python codes exactly
for MNIST digits classification, which is available at https://github.com/
mnielsen/neural-networks-and-deep-learning/archive/master.zip.

Otherwise, you can directly use the Python MLP function available at https://
scikit-learn.org/stable/modules/generated/sklearn.neural_network.
MLPClassifier.html.

Guangliang Chen | Mathematics & Statistics, San José State University 46/69

https://github.com/mnielsen/neural-networks-and-deep-learning/archive/master.zip
https://github.com/mnielsen/neural-networks-and-deep-learning/archive/master.zip
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

Artificial Neural Networks

Nielson’s Python codes for neural networks

load MNIST data into python
import mnist_loader
training_data, validation_data, test_data = mnist_loader.
load_data_wrapper()

define a 3-layer neural network with number of neurons on each layer
import network
net = network.Network([784, 30, 10])

execute stochastic gradient descent over 30 epochs and with mini-batches
of size 10 and a learning rate of 3
net.SGD(training_data, 30, 10, 3.0, test_data=test_data)

Guangliang Chen | Mathematics & Statistics, San José State University 47/69

Artificial Neural Networks

Practical issues and techniques for improvement
We have covered the main ideas of neural networks. There are a lot of practical
issues to consider:

• How to fix learning slowdown

• How to avoid overfitting

• How to initialize the weights and biases for gradient descent

• How to choose the hyperparameters, such as the learning rate, regularization
parameter, and configuration of the network, etc.

Guangliang Chen | Mathematics & Statistics, San José State University 48/69

Artificial Neural Networks

The learning slowdown issue with square loss
Consider for simplicity a single sigmoid neuron

x1

x2

xd

w1

w2

wd

b

b
b
b

σ(w · x+ b)

The total input and output are z = w · x + b and a = σ(z), respectively.

Guangliang Chen | Mathematics & Statistics, San José State University 49/69

Artificial Neural Networks

Under the square loss C(w, b) = 1
2 (a− y)2 we obtain that

∂C

∂wj
= (a− y) ∂a

∂wj
= (a− y)σ′(z)xj

∂C

∂b
= (a− y)∂a

∂b
= (a− y)σ′(z)

When z is initially large in magnitude, σ′(z) ≈ 0. This shows that both wj , b will
initially learn very slowly (which could be good or bad):

wj ←− wj − η · (a− y)σ′(z)xj ,

b←− b− η · (a− y)σ′(z).

Therefore, the σ′(z) term may cause a learning slowdown when the initial weighted
input z is large in the wrong direction.

Guangliang Chen | Mathematics & Statistics, San José State University 50/69

Artificial Neural Networks

How to fix the learning slowdown issue
Solution: Use the logistic loss (also called the cross-entropy loss) instead

C(w, b) = −y log(a)− (1− y) log(1− a)

With this loss, we can show that the σ′(z) term is gone:

∂C

∂wj
= (a− y)xj

∂C

∂b
= a− y

so that gradient descent will move fast when a is far from y.

Remark. A second solution is to add a “softmax output layer” with log-likelihood
cost (see Nielson’s book, Chapter 3).

Guangliang Chen | Mathematics & Statistics, San José State University 51/69

Artificial Neural Networks

Nielson’s implementation for neural networks with
cross-entropy loss

define a 3-layer neural network with cross-entropy cost
import network2
net = network2.Network([784, 30, 10],
cost=network2.CrossEntropyCost)

stochastic gradient descent
net.large_weight_initializer()
net.SGD(training_data, 30, 10, 0.5, evaluation_data=test_data,
monitor_evaluation_accuracy=True)

Guangliang Chen | Mathematics & Statistics, San José State University 52/69

Artificial Neural Networks

How to avoid overfitting
Neural networks due to their many parameters are likely to overfit especially when
given insufficient training data.

Like regularized logistic regression, we can add a regularization term of the form

λ
∑
j,k,`

|w`
jk|p

to any cost function used in order to avoid overfitting.

Typical choices of p are p = 2 (L2-regularization) and p = 1 (L1-regularization)

Remark. Two more techniques to deal with overfitting are dropout and artificial
expansion of training data (see Nielson’s book, Chapter 3).

Guangliang Chen | Mathematics & Statistics, San José State University 53/69

Artificial Neural Networks

Nielson’s implementation for regularized neural
networks

define a 3-layer neural network with cross-entropy cost
import network2
net = network2.Network([784, 30, 10],
cost=network2.CrossEntropyCost)

stochastic gradient descent
net.large_weight_initializer()
net.SGD(training_data, 30, 10, 0.5, evaluation_data=test_data,
lmbda=5.0, monitor_evaluation_accuracy=True, monitor_training
_accuracy=True)

Guangliang Chen | Mathematics & Statistics, San José State University 54/69

Artificial Neural Networks

How to initialize weights and biases
The biases b`

j for all neurons are initialized as standard Gaussian random variables.

Regarding weight initialization:

• First idea: Initialize w`
jk also as standard Gaussian random variables.

• Better idea: For each neuron, initialize the input weights as Gaussian
random variables with mean 0 and standard deviation 1/√nin, where nin
is the number of input weights to this neuron.

Why the second idea is better: the total input to the neuron z`
j =

∑
w`

jka
`−1
k +b`

j

has small standard deviation around zero so that the neuron starts in the middle,
not from the two ends (see Nielson’s book, Chapter 3).

Guangliang Chen | Mathematics & Statistics, San José State University 55/69

Artificial Neural Networks

Python codes for neural networks with better
initialization

define a 3-layer neural network with cross-entropy cost
import network2
net = network2.Network([784, 30, 10],
cost=network2.CrossEntropyCost)

stochastic gradient descent
net.large_weight_initializer()
net.SGD(training_data, 30, 10, 0.5, evaluation_data=test_data,
lmbda=5.0, monitor_evaluation_accuracy=True, monitor_training
_accuracy=True)

Guangliang Chen | Mathematics & Statistics, San José State University 56/69

Artificial Neural Networks

How to set the hyper-parameters
Parameter tuning for neural networks is hard and often requires specialist knowl-
edge.

• Rules of thumb: Start with subsets of data and small networks, e.g.,

– consider only two classes (digits 0 and 1)

– train a (784,10) network first, and then sth like (784, 30, 10) later

– monitor the validation accuracy more often, say, after every 1,000
training images.

and play with the parameters in order to get quick feedback from experi-
ments.

Guangliang Chen | Mathematics & Statistics, San José State University 57/69

Artificial Neural Networks

Once things get improved, vary each hyperparameter separately (while
fixing the rest) until the result stops improving (though this may only give
you a locally optimal combination).

• Automated approaches:

– Grid search

– Bayesian optimization

See the references given in Nielson’s book (Chapter 3).

Finally, remember that “the space of hyper-parameters is so large that one never
really finishes optimizing, one only abandons the network to posterity.”

Guangliang Chen | Mathematics & Statistics, San José State University 58/69

Artificial Neural Networks

Summary
• Presented what neural networks are and how to train them

– Backpropagation

– Gradient descent

– Practical considerations

• Neural networks are new, flexible and powerful

• Neural networks are also an art to master

Guangliang Chen | Mathematics & Statistics, San José State University 59/69

Artificial Neural Networks

Further study (if you are interested)

• Other kinds of neurons such as tanh, and rectified linear

• Convolutional neural networks (CNN): specially designed for image
data

• Recurrent neural networks (RNN): image captioning, speech recogni-
tion, text sentiment classification, and language translation

• Deep learning

Guangliang Chen | Mathematics & Statistics, San José State University 60/69

Artificial Neural Networks

Other activation functions
We have mentioned Heaviside step and Sigmoid. Below are a few more:

• Hyperbolic tangent

g(z) = tanh(z) = ez − e−z

ez + e−z
= 2 sigmoid(2z)− 1

• Rectified Linear Unit (ReLU) ←− very popular

g(z) = max(0, z)

• Leaky ReLU (or parameterized ReLU if changing 0.01→ a)

g(z) = max(0, z) =
{

0.01z, z < 0
z, z > 0

Guangliang Chen | Mathematics & Statistics, San José State University 61/69

Artificial Neural Networks

Guangliang Chen | Mathematics & Statistics, San José State University 62/69

Artificial Neural Networks

What is a CNN?
Neurons are arranged in 2D arrays and only nearby neurons (pixels) are connected
to the same neuron in next layer, in a weights-sharing fashion.

(Copied from Prabhu’s online tutorial)

Guangliang Chen | Mathematics & Statistics, San José State University 63/69

https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148

Artificial Neural Networks

The convolutional layer

Guangliang Chen | Mathematics & Statistics, San José State University 64/69

Artificial Neural Networks

The pooling layer

Guangliang Chen | Mathematics & Statistics, San José State University 65/69

Artificial Neural Networks

What is an RNN?
Neuron network with 1 hidden layer being replicated in discrete time t:

ht︸︷︷︸
hidden state at t

= tanh(U xt︸︷︷︸
input at t

+V ht−1︸︷︷︸
past state

), ot︸︷︷︸
output at t

= softmax(Wht)

Guangliang Chen | Mathematics & Statistics, San José State University 66/69

Artificial Neural Networks

Guangliang Chen | Mathematics & Statistics, San José State University 67/69

Artificial Neural Networks

Deep learning

• Chapter 6 of Nielson’s book (which also gives a nice introduction to CNN)

• SJSU CMPE 258 Deep Learning (offered in Spring 2019!):
Deep neural networks and their applications to various problems, e.g.,
speech recognition, image segmentation, and natural language processing.
Covers underlying theory, the range of applications to which it has been
applied, and learning from very large data sets. Prerequisite: CMPE 255
Data Mining or CMPE 257 Machine Learning or instructor consent

Guangliang Chen | Mathematics & Statistics, San José State University 68/69

Artificial Neural Networks

Practice problems

1 Create a network with just two layers - only input and output, no hidden
layer - with 256 and 10 neurons, respectively. Train the network on the
USPS data set using stochastic gradient descent. What classification
accuracy can you achieve?

2 Now train a neural network with 4 layers [256, 100, 50, 10] and apply it to
the USPS digits. What is your best possible result?

Guangliang Chen | Mathematics & Statistics, San José State University 69/69

