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1. Review of linear algebra

Notation. Vectors are denoted by boldface lowercase letters (such as
a,b). To indicate their dimensions, we use notation like a ∈ R

n. The ith
element of a is written as ai or a(i). We denote the constant vector of one
as 1 (with its dimension implied by the context).

Matrices are denoted by boldface uppercase letters (such as A,B). Sim-
ilarly, we write A ∈ R

m×n to indicate its size. The (i, j) entry of A is
denoted by aij or A(i, j). The ith row of A is denoted by A(i, :) while
its columns are written as A(:, j), as in MATLAB. We use I to denote the
identity matrix (with its dimension implied by the context).

1.1. Matrix multiplication. Let A ∈ R
m×n and B ∈ R

n×k be two
real matrices. Their product is an m× k matrix C = (cij) with entries

cij =

n∑
�=1

ai�b�j = A(i, :) ·B(:, j).

It is possible to obtain one full row (or column) of C at a time via matrix-
vector multiplication:

C(i, :) = A(i, :) ·B
C(:, j) = A ·B(:, j)

The full matrix C can be written as a sum of rank-1 matrices:

C =

n∑
�=1

A(:, �) ·B(�, :).

When one of the matrices is a diagonal matrix, we have the following rules:

A︸︷︷︸
diagonal

B =

⎛
⎜⎝
a1

. . .

an

⎞
⎟⎠

⎛
⎜⎝
B(1, :)

...
B(n, :)

⎞
⎟⎠ =

⎛
⎜⎝
a1B(1, :)

...
anB(n, :)

⎞
⎟⎠

A B︸︷︷︸
diagonal

= [A(:, 1) . . .A(:, n)]

⎛
⎜⎝
b1

. . .

bn

⎞
⎟⎠ = [b1A(:, 1) . . . bnA(:, n)]

Finally, below are some identities involving the vector 1:

11T =

⎛
⎜⎝
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

⎞
⎟⎠ , 1T1 = 1

A1 =
∑
j

A(:, j), 1TA =
∑
i

A(i, :), 1TA1 =
∑
i

∑
j

A(i, j).

Example 1.1. Let

A =

⎛
⎝ 3 0 0

5 1 −1
−2 2 4

⎞
⎠ , B =

⎛
⎝1 0
0 −1
2 3

⎞
⎠ , Λ1 =

⎛
⎝1

0
−1

⎞
⎠ , Λ2 =

(
2
−3

)
.

Find the products AB,Λ1B,BΛ2,1
TB,B1 and verify the above rules.
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Remark. Another way to multiply two matrices of the same size, say
A,B ∈ R

m×n, is through the Hadamard product, also called the entrywise
product:

C = A ◦B ∈ R
m×n, with cij = aijbij .

For example, (
0 2 −3
−1 0 −4

)
◦
(
1 0 −3
2 1 −1

)
=

(
0 0 9
−2 0 4

)
.

1.2. Rank, trace and determinant. Let A ∈ R
m×n. The number of

linearly independent rows (or columns) is called the rank of A, and often
denoted as rank(A). It is known that rank(A) ≤ min(m,n). A square
matrix A ∈ R

n×n is said to have full rank if rank(A) = n; otherwise, it is
said to be rank deficient.

The trace of a square matrix A ∈ R
n×n is defined as the sum of the

entries in its diagonal:

trace(A) =
∑
i

aii.

If A is an m× n matrix and B is an n×m matrix, then

trace(AB) = trace(BA).

The matrix determinant is a rule to evaluate square matrices to numbers:

det : A ∈ R
n×n �→ det(A) ∈ R.

Its general definition is quite complicated, but there are lots of different ways
to evaluate matrix determinants (see https://en.wikipedia.org/wiki/

Determinant). The matrix A ∈ R
n×n is said to be invertible or nonsingular

if det(A) �= 0, which can be shown to be equivalent to being of full rank.
An important property of matrix determinant is for two square matrices of
the same size A,B ∈ R

n×n,

det(AB) = det(A) det(B).

Example 1.2. For the matrix A defined in Ex. 1.1, find its rank, trace
and determinant.

1.3. Eigenvalues and eigenvectors. Let A be an n× n real matrix.
The characteristic polynomial of A is

p(λ) = det(A− λI).

The (complex) roots λi of the characteristic equation p(λ) = 0 are called
the eigenvalues of A. For a specific eigenvalue λi, any nonzero vector vi

satisfying
(A− λiI)vi = 0

or equivalently,
Avi = λivi

is called an eigenvector of A (associated to the eigenvalue λi). All eigen-
vectors associated to λi span a linear subspace, called the eigenspace. It is
denoted as E(λi). The dimension gi of E(λi) is called the geometric multi-
plicity of λi, while the degree ai of the factor (λ− λi)

ai in p(λ) is called the
algebraic multiplicity of λi. Note that we must have

∑
ai = n and for all i,

1 ≤ gi ≤ ai.
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Example 1.3. For the matrix A in Ex. 1.1, find its eigenvalues and their
multiplicities, as well as associated eigenvectors.

The following theorem indicates that the trace and determinant of a
square matrix can both be computed from the eigenvalues of the matrix.

Theorem 1.1. Let A be a real square matrix whose eigenvalues are
λ1, . . . , λn (counting multiplicities). Then

det(A) =

n∏
i=1

λi and trace(A) =

n∑
i=1

λi.

Example 1.4. For the matrix A defined previously, verify the identities
in the above theorem.

Definition 1.1. A square matrix A is diagonalizable if it is similar to
a diagonal matrix, i.e., there exist an invertible matrix P and a diagonal
matrix Λ such that

A = PΛP−1.

Remark. If we write P = (p1, . . . ,pn) and Λ = diag(λ1, . . . , λn), then
the above equation can be rewritten as Api = λipi, for all 1 ≤ i ≤ n. This
shows that the λi are the eigenvalues ofA and pi the associated eigenvectors.
Thus, the above factorization is called the eigenvalue decomposition of A.

Example 1.5. The matrix

A =

(
0 1
3 2

)

is diagonalizable because(
0 1
3 2

)
=

(
1 1
3 −1

)(
3
−1

)(
1 1
3 −1

)−1

but B =

(
0 1
−1 2

)
is not (how to determine this?).

The following theorem provides a way for checking the diagonalizability
of a square matrix.

Theorem 1.2. A matrix A ∈ R
n×n is diagonalizable if and only if it

has n linearly independent eigenvectors.

This theorem immediately implies the following results.

Corollary 1.3. The following matrices are diagonalizable:

• Any matrix whose eigenvalues all have identical geometric and al-
gebraic multiplicities, i.e., gi = ai for all i;

• Any matrix with n distinct eigenvalues;

1.4. Symmetric matrices. A symmetric matrix is a square matrix
A ∈ R

n×n whose transpose coincides with itself: AT = A. Recall also that
an orthogonal matrix is a square matrix whose columns and rows are both
orthogonal unit vectors (i.e., orthonormal vectors):

QTQ = QQT = I,

or equivalently,
Q−1 = QT .



6

Theorem 1.4. Let A ∈ R
n×n be a symmetric matrix. Then

• All the eigenvalues of A are real;
• A is orthogonally diagonalizable, i.e., there exists an orthogonal
matrix Q and a diagonal matrix Λ such that

A = QΛQT .

Remark.

• For symmetric matrices, the eigenvalue decomposition is also called
the spectral decomposition.

• The converse is also true. Therefore, a matrix is symmetric if and
only if it is orthogonally diagonalizable.

• Write Λ = diag(λ1, . . . , λn) and Q = [q1, . . . ,qn]. Then

A =

n∑
i=1

λiqiq
T
i .

• We often sort the diagonals of Λ in decreasing order:

λmax = λ1 ≥ λ2 ≥ · · · ≥ λn = λmin.

Example 1.6. Find the spectral decomposition of the following matrix

A =

(
0 2
2 3

)

Answer.

A =
1√
5

(
1 −2
2 1

)
·
(
4
−1

)
· 1√

5

(
1 −2
2 1

)T

Theorem 1.5. For a given symmetric matrix A ∈ R
n×n, then

max
v∈Rn:v �=0

vTAv

vTv
= λmax (when v = largest eigenvector of A)

min
v∈Rn:v �=0

vTAv

vTv
= λmin (when v = smallest eigenvector of A)

Remark. The quantity vTAv
vTv

is called the Rayleigh quotient.

Example 1.7. For the matrixA in the preceding example, the maximum
of the Rayleigh quotient is 4, achieved when v = 1√

5
(1, 2)T .

Definition 1.2. A symmetric matrix A ∈ R
n×n is positive semidefinite

if xTAx ≥ 0 for all x ∈ R
n. It is positive definite if xTAx > 0 whenever

x �= 0.

Theorem 1.6. A symmetric matrix A is positive definite (semidefinite)
if and only if all the eigenvalues are positive (nonnegative).

Example 1.8. Determine if the following matrix is positive definite (or
semidefinite):

A =

⎛
⎝ 2 −1 0
−1 2 −1
0 −1 2

⎞
⎠
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HW0: Linear algebra review

Due: Wed., August 29, in class.

• Redo all examples in the lecture notes (Ex. 1.1-1.8) by coding in
one of the software (MATLAB, R, or Python) to verify the answers.

Note that your must show all your codes and output in order to
receive full credit. If you chose MATLAB, below are some functions
you might need:

– .* (entrywise product)
– diag
– trace
– det
– eig, eigs
– repmat
– ones, zeros
– eye
– rand

• Let A ∈ R
n×n be a symmetric matrix and D ∈ R

n×n a diagonal
matrix with positive diagonal entries (i.e., D = diag(d1, . . . , dn)
with d1, . . . , dn > 0). Show that the solution of

max
v∈Rn:v �=0

vTAv

vTDv

is given by the largest eigenvector of D−1A and the maximum of
the quotient is the largest eigenvalue of D−1A (which is the same

as the largest eigenvalue of D−1/2AD−1/2. Why?).

Hint: Define

D1/2 = diag(d
1/2
1 , . . . , d1/2n )

and
D−1/2 = diag(d

−1/2
1 , . . . , d−1/2n ).

Change variables by letting

u = D1/2v

to transform the above problem to the one in the lecture notes.


