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Quick facts

= Powerful tool in biophysics, biochemistry, and cell biology
= Relies on fluorescence detection, hence:
—high sensitivity

—modalities: spectroscopy (steady-state, time-resolved, stopped-
flow), microscopy, flow cytometry, high-throughput tech.

—works well both /n vitro and in vivo
= Requires two: a donor and an acceptor
= Reports proximity of molecules or moieties within a molecule
= \Works in the range of approx. 1-10 nm



Where It occurs In nature
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The antenna complex and photochemical reaction center in a photosystem.

Molecular biology of the cell - 4th ed.
© 2002 by Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith
Roberts, and Peter Walter.



Physical principles of FRET

g non-radiative = nonradiative

= weak dipole-dipole
Interaction

DONOR ACCEPTOR

I“')II = decays as 1/R°

= no overlap of
electron clouds

excitation wavelength

FRET requires overlap of the emission band of the donor = spectral shape
and the absorption band of the acceptor unchanged



Kinetics of fluorescence and FRET
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Forster radius (R,)

= the distance between D & A at which
the rate of fluorescence emission
equals the rate of FRET

Ry U (K*QpJ)Y°

= 50% of excited donors will emit light,
and 50% will pass energy to acceptors

= R, Is a function of the donor quant.
yield, spectral overlap, and orientation

= Can be calculated for a given donor-
acceptor pair from spectroscopic data



FOrster radius

depends on the overlap of acceptor absorbance
spectrum and donor emission spectrum
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FOrster radius

depends on the mutual orientation
of donor and acceptor transition moments
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Typical values of R,
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Efficiency of energy transfer

E = kT — ROG
k; +t;' Ry +R°

Distance and Energy Transfer Efficiency
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Determining the efficiency of FRET
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FRET microscopy studies: workflow
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Applications of FRET

= Changes: Association, aggregation, conformational changes,
enzymatic activity

= Absolute distances: Structural studies complementary to NMR, EPR,
X-ray crystallography, SAS, CryoEM

= Objects/techniques:
— macromolecules (structure, dynamics, biochemical reactions)

— supramolecular complexes (multisubunit proteins, polymers,
aggregates, prot.-nucl. acid, protein-lipid interactions, membrane
fusion, lipid rafts)

— cellular structures/processes (signalling, transport)
— whole cells (expression, viability)



Intramolecular FRET:
detecting conformational changes
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Example: Internal Movements within
the 30 S Ribosomal Subunit

= Single-Cys mutants
= 13 D-A pairs

= Alexa 488 & Alexa 568
= Association with 50 S subunit

= Agree with X-ray & cryoEM

= New information unavailable
from X-ray & cryoEM

Hickerson et al. (2005) J Mol Biol 354:459



Intermolecular FRET:
detecting interactions of biomolecules
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Gene-encoded two-component Cas* indicator

FRET constructs for measuring
intracellular calcium. CFP-labeled
calmodulin and YFP-labeled
calmodulin binding peptide (M13-
YFP) were coexpressed. High Ca?*
levels (right) lead to binding and
FRET emission of YFP (pseudo
color red); low Ca?* levels (left)
lead to little FRET and mostly blue
emission (pseudocolor green).

The left panel shows two cells before stimulation, while the right panel shows
the same cells after elevation of cytosolic Ca?* by 0.1 mM histamine.

Tsien & Miyawaki (1998) Science 280:1954-1955.



FRET In Flow Cytomery

Function-based isolation of novel enzymes from a large library

Protein variants are displayed on the surface
of microorganisms and incubated with a
synthetic substrate consisting of (1) a
fluorescent dye (2) a positively charged
moiety (3) the target scissile bond, and (4) a
fluorescence resonance energy transfer
(FRET) quenching partner. Enzymatic
cleavage of the scissile bond results in
release of the FRET quenching partner while
the fluorescent product is retained on the cell
surface, allowing isolation of catalytically
active clones by fluorescence-activated cell
sorting (FACS).
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Olsen et al. (2000) Nat Biotechnol 18:1071



Genetically encoded FRET reporter of
PKC phosphorylation

substrate YEP CKAR is comprised of
peptide MCFP, the FHA2 domain of
PKC Rad53p, a PKC substrate
H — H sequence, and mYFP. The
-OH  Phosphatase substrate sequence, when
¢ {3 phosphorylated, binds the
/ YFP FHA2 phospho-peptide—
/ \ binding domain. This
4hTom FRET 1 434nm 476 nm conformational change
results in a change in FRET,
528 nm )
reversible by phosphatases.
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Advantages and disadvantages

The upside...

FRET is relatively cheap!!!

It is very efficient in measuring changes in distances.

You measure distances in molecules in solution.

You only need a few uM of labeled proteins.

Once you have labeled your molecule, you can have a measurement rapidly.
You can measure distances or changes in distances in complex of molecules

...and the downside

The precision of the measure is impaired by the uncertainty of the orientation factor
and by the size of the probes

When measuring a change in distance between two probes, the result is a scalar and
give no indications of which probe (donor and/or acceptor) moves.

The presence of free labels in solution could mask a change in energy transfer.
These measurements give the average distance between the two probes.
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