

AE 169 – Computational Fluid Dynamics – Spring 2019

Instructor Info	Dr. Periklis Papadopoulos Office: Engr. 272D (408) 924-7168 periklis.papadopoulos@sjsu.edu		
Office Hours	Wed 4:30 pm – 6:30 pm		
Course Credit	3 units		
Class Days / Time Final Exam Classroom	TR 10:30 – 11:45 am Wednesday 16 May 12:15 – 2:30 pm Engr-331		
Prerequisites	"C-" or better in: Math 129A, AE160		
Textbook	<i>Fundamentals of Computational Fluid Dynamics</i> Lomax, Pulliam and Zingg, Springer-Verlag, Berlin 2001 ISBN 3-540-41607-2		

Description

Physical and mathematical foundations of computational fluid mechanics with emphasis on applications. Solution methods for advection, diffusion, Euler and Navier-Stokes equations. The finite-volume formulation of the equations. Classification of partial differential equations and solution techniques. Truncation errors and stability analysis.

AE 169 – Computational Fluid Dynamics – Spring 2019

Goals Introduce students to basic numerical methods for fluid dynamics as well as to the basics of grid generation.

Learning Objectives

Students completing AE169 should be able to:

- 1. Use numerical tools based on the Euler and Navier-Stokes equations to analyze inviscid and viscous flows.
- 2. Generate appropriate grids for various aerospace engineering flows.
- 3. Determine the accuracy of numerical methods.
- 4. Use linear theory to design a numerical algorithm for a specific application.

Approximate Weekly Schedule

Week	Topic(s)				
01	Introduction to computational fluid dynamics				
02	Partial differential equations				
03	Discretization methods; errors, stability and consistency				
04	Explicit time differencing methods				
05	Implicit time differencing methods				
06	Central, upwind and characteristics of spatial differencing techniques				
07	Classical relaxation methods				
08	Multigrid methods				
09	Numerical methods for inviscid flows				
10	Shock-capturing methods				
11	Numerical methods for boundary layer flows				
12	Numerical methods for the Navier-Stokes equations				
13	Modeling of 3-D aerodynamic flows				
14	Grid generation; algebraic, differential equation, and variational methods				
15	Grid generation; unstructured and adaptive grids				
16	Contemporary methods and codes				
Grading	Biweekly Quizzes		600 points		
	Project		200 points		
	Homework Problems		200 points		
	950 points	< A+			
	900 points	< A			
	850 points	< A-			
	800 points	< B+			
	750 points	< B			

700 points

675 points

650 points

625 points

600 points

Below 600 points = F

< B-

< C+

< C

< C-

< D

AE 169 – Computational Fluid Dynamics – Spring 2019

Project

Work in assigned teams to define a CFD project relating to your aircraft or spacecraft design project. A proposal is due no later than the 3rd week of the semester following the posted guidelines. Progress reports are due every 2 weeks throughout the semester. A final report and an oral presentation are due at the end of the semester.

University Policies

Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Programs' <u>Syllabus InfOrmation web page</u> at <u>http://www.stsu.edulgup/syllabusinfO!</u>

AE Department and SJSU policies are also posted at http:1/www.sjsu.edu/ae/programs/policies/