
Document info 6.

Fresnel Equations
Tuesday, 9/12/2006

Physics 158
Peter Beyersdorf

1

sile
nt “

s”



6.

Class Outline

Boundary Conditions for EM waves

Derivation of Fresnel Equations

Consequences of Fresnel Equations

Amplitude of reflection coefficients

Phase shifts on reflection

Brewster’s angle

Conservation of energy

2



6.

∮
B · dA = 0

∮
E · ds = − d

dt

∫
B · dA

∮
εE · dA =

∑
q

∮
B

µ
· ds =

∫
J · dA +

d

dt

∫
εE · dA

When an EM wave propagates across an 
interface, Maxwell’s equations must be satisfied 
at the interface as well as in the bulk 
materials.  The constraints necessary for this to 
occur are called the “boundary conditions”
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Boundary Conditions
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∮
B · dA = 0

∮
E · ds = − d

dt

∫
B · dA

∮
εE · dA =

∑
q

Boundary Conditions

Gauss’ law can be used to find the boundary 
conditions on the component of the electric field 
that is perpendicular to the interface.  

If the materials are dielectrics there will be no 
free charge on the surface (q=0)

4ε1E1⊥ = ε2E2⊥∴→
0ε1E1⊥ − ε2E2⊥ =

∑
q

∮
B

µ
· ds =

∫
J · dA +

d

dt

∫
εE · dA
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Boundary Conditions
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∮
B

µ
· ds =

∫
J · dA +

d

dt

∫
εE · dA

∴ E1‖ = E2‖E2‖ − E1‖ = − d

dt

∫
B · dA→

0

ε1, µ1 ε2, µ2

Faraday’s law can be applied at the interface.  If 
the loop around which the electric field is 
computed is made to have an infintesimal area 
the right side will go to zero giving a 
relationship between the parallel components of 
the electric field
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∮
B

µ
· ds =

∫
J · dA +

d

dt

∫
εE · dA

∮
B · dA = 0

∮
E · ds = − d

dt

∫
B · dA

∮
εE · dA =

∑
q

Boundary Conditions

Gauss’ law for magnetism gives a relationship 
between the perpendicular components of the 
magnetic field at the interface
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∮
B · dA = 0

∮
E · ds = − d

dt

∫
B · dA

∮
εE · dA =

∑
q

Boundary Conditions

Ampere’s law applied to a loop at the interface 
that has an infintesimal area gives a relationship 
between the parallel components of the 
magnetic field.  (Note that in most common 
materials μ=μo)
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∮
B

µ
· ds =

∫
J · dA +

d

dt

∫
εE · dA

B1‖

µ1
L−

B2‖

µ2
L =

∫
J · dA +

d

dt

∫
εE · dA

B1‖

µ1
=

B2‖

µ2
∴→

0
→
0

ε1, µ1 ε2, µ2
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Reflection at a Boundary
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“s” polarization (senkrecht, aka TE or 
horizontal) has an E field that is 

perpendicular to the plane of incidence

“p” polarization (parallel aka TM or 
vertical) has an E field that is parallel 

to the plane of incidence 

The reflection and transmission 
coefficients at an interface can be 
found using the boundary conditions, 
but they depend on the polarization of 
the incident light  

B1‖

µ1
=

B2‖

µ2

B1⊥ = B2⊥

ε1E1⊥ = ε2E2⊥

E1‖ = E2‖
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S-Polarization at a Boundary

The tangential electric field is continuous
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B1‖

µ1
=

B2‖

µ2

B1⊥ = B2⊥

ε1E1⊥ = ε2E2⊥

E1‖ = E2‖

!Ei(y = 0, t) + !Er(y = 0, t) = !Et(y = 0, t)

Using θi=θr and B=nE/c and considering only the 
amplitude of the waves at the boundary

ni (E0r − E0i) cos θi = −nt (E0r + E0i) cos θt

 *It's actually the tangential B/μ, but we're assuming μ=μ0

Bi Br

BtThe tangential magnetic field is continuous*

!Bi(y = 0, t) cos θi + !Br(y = 0, t) cos θr = !Bt(y = 0, t) cos θt

!Bi(y = 0, t) cos θi + !Br(y = 0, t) cos θr = !Bt(y = 0, t) cos θt
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rearranging to find r =Eor/Eoi gives

S-Polarization at a Boundary
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ni (E0r − E0i) cos θi = −nt (E0r + E0i) cos θt

and similarly t =Eot/Eoi is

T

T
r⊥ =

E0r

E0i
=

ni cos θi − nt cos θt

ni cos θi + nt cos θt

t⊥ =
E0t

E0i
=

2ni cos θi

ni cos θi + nt cos θt
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P-Polarization at a Boundary

The tangential electric field is continuous
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B1‖

µ1
=

B2‖

µ2

B1⊥ = B2⊥

ε1E1⊥ = ε2E2⊥

E1‖ = E2‖

Ei(y = 0, t) cos θi + Er(y = 0, t) cos θr = Et(y = 0, t) cos θt

Ei(y = 0, t) cos θi + Er(y = 0, t) cos θr = Et(y = 0, t) cos θt

 *It's actually the tangential B/μ, but we're assuming μ=μ0

The tangential magnetic field is continuous*
Bi(y = 0, t) + Br(y = 0, t) = Bt(y = 0, t)

Bi Br

Bt

Using θi=θr and E=cB/n and considering only the 
amplitude of the waves at the boundary

nt (E0r − E0i) cos θi = ni (E0r + E0i) cos θt



6.

rearranging to find r =Eor/Eoi gives

P-Polarization at a Boundary
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and similarly t|| =Eot/Eoi is

||

nt (E0r − E0i) cos θi = ni (E0r + E0i) cos θt

r‖ =
E0r

E0i
=

nt cos θi − ni cos θt

ni cos θt + nt cos θi

t‖ =
E0t

E0i
=

2ni cos θi

ni cos θt + nt cos θi
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At normal incidence

At “Brewster’s angle”

At grazing incidence

Fresnel Equations
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r⊥ =
E0r

E0i
=

ni cos θi − nt cos θt

ni cos θi + nt cos θt

t⊥ =
E0t

E0i
=

2ni cos θi

ni cos θi + nt cos θt

r‖ =
E0r

E0i
=

nt cos θi − ni cos θt

ni cos θt + nt cos θi

t‖ =
E0t

E0i
=

2ni cos θi

ni cos θt + nt cos θi

reflection and transmission at an air-glass interface

r =
nt − ni

nt + ni

r‖ = 0

lim
θi→90o

r = −1

How can r|| differ from r  at θ=0 where s 
and p-polarization are degenerate?

T

Why isn’t t||=1 when r||=1?  If 
none of the field is reflected, 
shouldn’t it all be transmitted?
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Reflection and Transmission at 
Normal Incidence
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Considering our definition for 
what we consider positive Er 
notice that as θ→0 we have 
positive values for Er pointing in 
different directions for s and p-
polarization, hence the reflection 
coefficients need to have opposite 
sign for them to converge to the 
same physical solution

Note that r2+t2=1 indicating 
energy is conserved at the 
boundary

t =
2nt

nt + ni
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Brewster’s Angle

When the incident electric field oscillations 
excite dipole oscillation in the material in a 
direction parallel to the reflected beam the 
dipoles cannot radiate along the direction of 
the reflected beam

At this angle, called “Brewster’s angle” r||=0.  
There are many practical applications of this

polarize the reflected light

minimize reflection off the surface of 
laser mirrors
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R =
Ir cos θr

Ii cos θi
= r2

T =
It cos θt

Ii cos θi
= t2

cos θt

cos θi

6.

Conservation of Energy 

Irradiance is proportional to the square of 
the field so if we are interested in the 
reflected and transmitted irradiance we use 
the square of the field  reflectivity r and 
transmissivity t 
(i.e. r2 and t2)

The power is irradiance times area, and the 
cross sectional area of the beam is different 
for the incident and transmitted beams

The power reflection and transmission 
coefficients for a beam are R and T and are 
called the Reflectance and Transmittance

R+T=1 so energy is conserved
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Acosθi

A
Acosθr
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A full electromagnetic treatment of the fields 
at the boundary of two dielectrics leads to the 
Fresnel equations for transmissivity and 
reflectivity

At normal incidence

At Brewster’s angle the reflectivity of the 
P-polarized field goes to zero 

The power reflectivity and transmissivity of a 
beam are 

6.

Summary
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r =
nt − ni

nt + ni
t =

2nt

nt + ni

T = t2
cos θt

cos θi
R = r2


