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Bloch Waves

_—

There are various classes of boundary
conditions for which solutions to the wave
equation are not plane waves

@ Planar conductor results in standing waves
E(z) = 2FEysin (k,z) cos (wt)

@ Waveguide and cavities results in modal
structure

E(CE, y7 Z) - Enm<$, y>€_ik2

® Periodic materials result in Bloch waves
B 27 /A B L
E(F) = / E(K,7)e " TdK
0
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Class Outline
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@ Types of periodic media

@ dispersion relation in layered materials
@ Bragg reflection

@ Coupled mode theory

® Surface waves
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Periodic Media
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Many useful materials and devices may have an
inhmogenous index of refraction profile that is
periodic

@ Dielectric stack optical coatings
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Periodic Media

————

Many useful materials and devices may have an
inhmogenous index of refraction profile that is
periodic

@ Diffraction gratings

Grating at Simple Light
Qo .
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Periodic Media
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Many useful materials and devices may have an
inhmogenous index of refraction profile that is
periodic
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Periodic Media

—_—

Many useful materials and devices may have an
inhmogenous index of refraction profile that is
periodic

@ Acousto-optic devices
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Periodic Media
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Many useful materials and devices may have an
inhmogenous index of refraction profile that is
periodic

@ Photonic bandgap crystals
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Bloch’s Theorem

_—

- ) 2
=" E(f)= / E(R,7)e K TdR
0

) dee sélu’rions in a periodic medium (Bloch waves) are
different than in a homogenous medium (plane waves)

@ A correction factor E(K,r) accounts for the difference
between plane wave solutions and Bloch wave
solutions

® Wave amplitude has a periodicity defined by the
underlying medium, Ex(K,r)=Ex(K,r+\)

@ E(K,r) are normal modes of propagation
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Waves in Layered Media

_—

. “| For a wave normally incident on an

o A\ isotropic layered material, we Il find the
e [ “dispersion relationship” (w vs K curve)
r— for Bloch waves. This will tell us about

= the behavior of waves in the material.

We'll see the periodic structure reflects
certain wavelengths. This is referred to
as Bragg reflection.
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Wave Equation in Layered Media

Starting with the wave equation

ﬁx(ﬁxﬁ)+ue%2—5:0

we will plug in the dielectric tensor written as a
Fourier series with periodicity A

€(z) = Z ere R

l

and an arbitrary wave

—

E = / Eo(k)e " R=Fwt) g,
to get

/ K2Eo(k)e™*2dk + wp )" e 2 / Eo(k)e ™ dk = 0
l

Ch 6,11




Wave Equation in Layered Media

—
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l

with /k@o(/ﬂ)e—mdk+w2uzele—“%z/Eo(k)e—“”dk =0
l

ing K s 20
and defining ¥ =k+ =
gives /k@o(k)e—““dk—wm/ZqE’O(k’ - 2—m)e—ik’2dk’ =0
: A
or n n 2ml —ikz
/(szO(k)—wz,uzl:qu(k—%)>6 P2k = 0
o)
- - 2l
°F — W En(k — =) = for all k
k2Eo (k) — w ,u;el o(k— =) =0
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Wave Equation in Layered Media
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—_—

) —w MZEZEO k—z—ﬁl =0 for all k

Is an infinite set of equations. Consider equations for:
kA/2m=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 ...

k=0l |
K:O,ZT%/\_T coupled T T

K=0.41/A
Let K be the value value of k+2ml/A closest to wepeg in a series of coupled

equations, where €g is the zeroth order Fourier coefficient of €(z).
The whole series of equations for -co<k<co can be freated instead as a
series of coupled equations for 0<K<2m/A. The solution to each set of
equations for a value of K only contains terms at k=K+2nl/A, thus

B [ i — - Xt s




Bloch Waves in Layered Media

=
—=

The Bloch waves are normal modes of propagation so

. 27 /A .
E(z) = / E(K,z)e "B2dK
0

and each mode is composed of plane wave
components of amplitude E(K+2ml/A). To find these
amplitudes we consider the dispersion relation

K Eo(k) —w’pny e Eo(k — 2%1) =0
l
Since this represents an infinite set of coupled
equations, we will examine this expression and
Isolate the equations that couple most strongly to

Eo(K), ignore the rest and solve for Eo(k)




Field Components in Layered Media
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- - 27l
k2 Eo (k) — wmzl: e1Eo(k — =) =0

= - ~ 27 ~ 27
or Kk*Ey(k) — w’nesEo(k) — w? e Eo(k — K) — wne_1Ey(k + K) —...=0

Allowing us to express the Eo(K-2ml/A) amplitudes as

R 1 — 27 - 27
EO(K) = K2 — w2IUJ€¢ (CUQILLElEO(K - K) +w2M€_1E0(K + K) .. )
Eo(K — A ) = 3 ; (wQ,uelEO(K — ZKW) +w?pe_1Eo(K) — .. )
(K= %) —wihe,
~ 27 1 = = 2
EO(K—|— A): . (wz;LElEO(K)-sz,LLG1E0(K‘|‘2K7T)—--->
(K + 25)" — w?pe,
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Resonant Coupling of Waves

with wavenumber k is fik, for

Momentum of forwards wave )
_—
K
backwards wave it is -fik. H

Grating can be thought of as superposition of
forwards and backwards going waves, with momenta
thky, where kq=21/A. For light to couple between

forwards and backwards waves, momentum must be
conserved fik+mhikg=-f1k

This is like a collision of a forward photon with m
phonons producing a backwards photon

Ch 6,16




Field Components in Layered Media

=
—=

- 1 a 2T - 21
EO(K) = K2 — w2,u6@ (WQ/LElEO(K - X) —|—w2/,L€_1E0(K + K) — .. )
- 2T 1 - 2T -
Eo(K — X> = S (wQ,uelEO(K—QK)—i—wz,ue1EO(K) —)
(K =) —wpe
EO(K—I— Kﬂ-): 2 <w2,u€1EO(K)+W2M€—1E0(K+2XW)---)
(K + )" —w?pe

2
In the case where (K—lzxﬂ) # w'pe, i.e. the forward wave
momentum cannot be converted to the backward wave
momentum by the addition of a kick from the grating in the
layered material, only the |=0 term is significant and the
dispersion relation K?E,(K) —w2uZelﬁo(K— 2%1) =0
for any value of K is uncoupled té that for other values of K,
and gives K? —w?ue, = 0meaning the phase velocity is that due

to the average index of refraction for the medium Ch 617




Coupling of Field Components

— -
—=

- 27l 1 - 2m(l — 1 - 27l
Eo(K + ) = — <w2uelEo(K+ %) +w2p,e_1E0(K+2T
(K + %) — w?ne
=0 - 1 27 27
Eoy(K) = Eo(K — — Eo(K+—)—...
o(K) Kz_wgu%( per Eo( A)"‘W pe_1Eo( +A) )
27 1 5 = 27
|=-1 Ey(K — K) = —_— w el Eo(K — ZX) + w?pe_1Ey(K) —
(K= %) —w?ne
_ - 2T 1 - - 27
=l E (K + K) — — <w2uelE0(K) +w2,ue_1E0(K+2K) — ..
(K + %) —w?pne

2
2
In the case where (K—lx) ~ w’ue; for some non-zero value of
l=m this |=m term is also significant and for the dispersion

' 27l
relation K?Ey(K) — w quEoK—i _0

we need only consider two values of K, i.e. K and K-2mm/A.

)—...)

»
)
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Dispersion Relation in Layered Media
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. . . 27l
The dispersion relation ) — w /LZEZEO (k — l =0

Considering only terms with E(K) and E(K—2rrm//\) gives

= 2mm
(K? — w?pey) Eo(K) —w 2 e Eo (K — T) = 0
27rm\ > 2mm 9 =
K_T — w?ue, | Ey K_T —wpe_m Eo(K) = 0

A nontrivial solution to these coupled equations only exists if

K? — w? e, —w? e, _ 0

—w? e, (K — %Tm)2 — w? ey

. . . A
and for €-n=€n* in a lossless medium, since . _ %/ (2)e~2mmE/A g
0

9 2
(K? — w?pey) <(K N WTm> B W2M6¢> — (@plenl)” =0 ch 6,19




Dispersion Relation in Layered Media

— ~ -
—_—

2
(K2 - w2ue@) ((K - %Tm) — w2u€¢> - (wz,u|€m])2 =0

which can be solved for K, the Bloch wave vector for a wave
of frequency w

\
- )
0.95 (— :
|

I
|
L

graph of dispersion relationship (figure 6.2) h 620




Bandgaps in Layered Media

—
—_—

2 9 2
o (55t (52 s

When the Bragg condition is met (K2-2rrm//\=uu2c-:@ u)

) ) K K?
real solutions exist for «?< andw? >
1€y + |€ml) 1€y — |€ml)
) K2 ) KQ
< w <
Solutions for PR P) e

are complex, this region is called the forbidden
band. At the center of the forbidden band

2 2
wherél( —ﬂ) ~wlue,  Ande? —wlue, =0, i.e. o = (mz)
A Azllfas

e
the dispersion relation gives k = —— N (1+l—)

2¢4
Ch 6,21




Bandgap Properties

The forbidden band has a width in w, called the
bandgap that is

|€nl
Aa)gap = Ll)E—Qj

And at its center has an attenuation coefficient

mm Aw,,
Im[k] = N (j"’

Thus, the greater the Fourier coefficient |en| the
larger the bandgap and the stronger the
attenuation in the gap.

Ch 6,22




Bloch Waveform

— -
—=

With our calculated dispersion relationship

2 9 2
B (32 e+ (52

we can choose a frequency w, calculate K(w) and
solve

= 2mm
(K? — w?ney) Eo(K) — w 2 jlem Eo(K — T) = 0
2rm \ * - 2m "
[(K — T) — w? ey | Ey (K T) — W pe_mEo(K) = 0

for E(K) and E(K-2mm/A) giving the waveform of the
Bloch mode at frequency w (or wavenumber K(w))
considering only these two componen’rs

Z EO o l— i(K—l%)z—iwt

[=0,m

Ch 6,23




E—

Bloch Waveform Example

Consider a periodic structure Ah N
consisting of alternating layers of
high index and low index material
(nh=1.8, ni=1.5).

Find the waveform in the material
for a wave of wavelength A=2A

A=N/2

Ch 6,24




Bloch Waveform Example

{(«Dispersion relation for |k- 2 Pi m/A|l~k with only two terms 1-0 and l-m«)
eqd = (k"2 - 0*2puepld) ({(k- Z2Pimn/A)*"2 -w0"2uepl) - (wpepm) ™2 -0

(f Zmor 2 |
Out[F17]= —epm2 ,.'..:2 w? 4 (k2 - epd ,.'..:wz) | |k - —J -epl ,.'..:uzl =
W A

(vDispersion relation expressed as k(¥) and ¥ (k)+) Example solved using
80l = Solve[eqd. k] “Mathematica”
so0lw = So0lve[eqd. w]

[ . [ f
mer - o eplA? po? Ay deplin? 2 pe? + epm? A2 02 w? } {k mor+wf o epla? pw? Ay deplin? A2 pe? + epm® A2 12 w? }
. —* .

Out[F18]= k-
{{ : :
f . [ r
{k mr-%of? +eplA? pe? AV deplin? 2 pe? + epm? A% pF w? } {k nr+%wf o+ epla? pew? + AV deplin? o2 pe? + epn® A7 pF w? }}
- . -
A A
1 [ {epo? 2K? 4nf A 4kma 1
Cut[F19]= {{u—}—— | + + - -
J 2 W hepl? eplu  epOA n  epOAu epl? AZ .2
1) 1 fepn® 2P
(f(-4ep0® a2 (4K 0 2® —4X mwa+ k' A7) 1+ (~4ep0n® 2% prdepOkmmAu- 2epk® A% u o epn® A7 ;sz]]]]}, {m—>—|J| o=,
JZ W hepd?  epOp

4u® ~* 4km: 1 1
- — i e (V-4 ep0® A (4K 0* A 4K mr KT A7) o 4 (-4 ep0n® 2P e depOkm A p -2 ep0K® A% - o f;?)z]]H},
epl A< n epl & p eplle A< g
i 2 2 2
epm K zm® Zkm: 1
P il ((-4ep0® A% (450 * - 41 w7 4%) 12 4

{w — _\II | + + - +

\ 2 epi02 eplu  epOA2 u  eplau  2epl? A2 8
epu® K® zn? A Zkmor

+ + - +
Z epl0z ep0p  eplAZ u  eplAu

(-4 Epo2 P u+deplknrhu-2 E];uEIk2 Al ,f..:—El:lIll2 A2 ,.'..:2]2] ]J} {w—> \|J|

1
(f(-2epi® a2 (4K 0 * -4k  mwra+ k' 4%) 1P 4 (~depln® »° psdeplkmoap - 2eplk® A% u- epn® A2 #2)2]]]}}

Zepl2 A2 ;2
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Bloch Waveform Example

(+ assign each of the 4 possible solutions to the dispersion relationship to different wvariables ki-k4 for k (¥).
wl-wd4 for w(k)«)

k1-k /. sol[[1]1]1[[1]]:

k2=k /. s0l[[2]1]1[[1]1]:

k3=k /. s0l[[3]1]1[[1]1]:

k4 =k /. sol[[4]1]1[[1]1]:

¥l -w/ solw[[1]]1[[1]]:

w2 =w/ solw[[2]]1[[1]]:

¥3=-w/. 301w[[311L[1]1]:

¥i=w/ solw[[4]]1[[1]]:

(vparameters to use in numerical solutionsw)
nl=1_5; {vLow index laverw)

nh=1_8. {(+High index laverw)

epl =ml"2:

eph =nh"~2:

A=106410"-9;: (+»wavelengthw)

c=299792458;

wl =2Pic/A:

kD=2Pi/A:

(v+List of assignment of numerical values to parameters«)

var = {epl - 8_854187817 10" -12 v(epl +eph) /2, p—-4Pil0"~-7, A-0.5A mn—-1, epm— 8 _85418781710"-12 « 2/P1i {eph - epl).
k-+kDwvx}

(+*This list Exagerates the aize of &, by 10'? so that structure of bandgap can be seen and iz nmot lost
due to numerical precision limitsw)

varfake = {ep0 -+ 8_85418781710"-12 +v(epl +eph) /2, p—+4Pi10"-7 A 0.5, m—1,
epm — 10712 8 854187817 10" -12 « 2/Pi (eph -epl). k—=k0O«x}

Ch 6,26




Bloch Waveform Example

(*Plot of dispersion relationship with bandgap exagerated by 101? (see note about wvarfake above)w)
dx =0.001; (vwidth of graph«)
P11 - Plot[{%2/wd /. varfake, w4 /0wl /_ varfake}, {x. 1 -dx, 1+dx}, DisplayFunction - Identity]
Plot[{ w2/ /wd /. varfake, w4/wl /. varfake}. {x. 1 -dx. 1+dx}. PlotLabel — "Dispersion Pelation".
FrameLabel — {"k/kp". "w/wg™}. Text5tyle — {FontFamily - "Chalkboard”, Font5ize - 12}, ImageS5ize — {400, 300 }.

Frame — True., FrameTicks — Automatic]

Dispersionfelation

gelddpbrm——m—mm——m—m>7——m——————————————————————————————————
0604 L 1
0.6038¢ .
2 0.6036] ]
-\.E_ DispersionRelation

I:I.E":I 3‘|:|' - ] 0.60362

0.6036

G_EI'DBE [ ] 0.60358

0.60356

0603} 1  o.e03s4

L — — L L — —t —t . —t —t . . 0.60352

I::I'ggl;l I::I'gl;ll;'E' 1 l'l::II:ICIEI l-l::ll::ll 0.9999 0.99995 1 1.00005 1.0001
k ik o

Dispersion relation without
. wil 0,27
exaggeration




In[929]:=

In[220]:=

Cut[EEn]=

Out@3]=

In[228]:=

In[943]:=

Cut[ad4]=

Cut[a45]=

Bloch Waveform Example

{(+Bloch wavenumber and frequency at the center of the bandgapw)

E1-Pi/A{1l+IAbs[epm]/(Z2epd)) /. var
E2=Pi/A(1-T1Abs[epm]/ (2 epD)) /. ¥war
v =2cPi/({(nl +nh)aAa) /. wvar:

5. 90525x10° +677924. 4
5.90526x10° -677924. 4

(+Equations relating amplitude of E (k) and E (k- 2 Pi m/A) components of Bloch wavew)
eql =(E*2 - w*2puepd)Eo - w*2puepnEm ==0;
eqZ = ((E-Z2Pim /A) 2 -0 " 2uepD)En - w™Zu epRnEo ==0;

(+E0 and Em are the plane wave component amplitudes of the Bloch wave in the periodic mateiral.

are two solutions for Em realtive to EO, one for each value of Ew)
ED=1;
Eml =FEn /. 5Solve[{eql /. Join[var. {we—-wc. E—=<E1}]. Eo-=-1}. Em]J[[1]1]1[[1]1]
EmnZ2 -Em /. Solve[{eql /. Join[var, {w—=wc, E-=EKEZ}]. Eo=-1}, Em][[1]1]1[[11]

-0. 0926296 + 0. 991303 o

-0. 0920296 - 0. 991303 o

There
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Bloch Waveform Example

In[@7l]:= {«Bloch waveform in the periodic material for both possible wavenumbers at the bandgap center (E1 and EZ2)«)
E1 - (EOExp[-Ik0=z] +Emi1 Exp[-I(k0-2Pim/ A)z])Exp[-IE1=] /. war:
EZ2 = (EOExp[-I1k0z] +EnZExp[-I(k0-2Pim/ A) z])Exp[-IEZ2=2] /. var:
Plot[Re[E1]. {=. 0. 510"-6}., PlotLabel — "Bloch wave 1", FrameLabel - {"z (m)"., "relative amplitude”}.
Text5tyle —» {FontFamily - "Chalkboard”, Font5ize - 12}, ImageS5ize - {400, 300}, Frame - True., FrameTicks — Automatic]
Plot[Re[E2]. {=z. 0. 510"*-6}., PlotLabel —+ "Bloch wave 2", FrameLabel - {"z (m)"., "relative amplitude”}.
Text5tyle - [FontFamily - "Chalkboard”. Font5ize - 12}, ImageS5ize - {400, 300}, Frame - True. FrameTicks — Automatic]

Bloch wave 1 Bloch wave 2

20 | 0.75 }

0.5}

i e

-0.5}
-20 ¢t -0.75}

0 1¥10®  2¥10¢ 3¥10° 4¥10° 5¥10°¢ 0 1¥10°  2¥10° 3¥10° 4¥10° 5¥10°
z HinL

z HnL
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High-Reflector Stack

_—

A series of alternating high-index,
low-index layers, each A/4
in thickness has

2\’ n?
(k—f) =w’ue, and €#0, and =

A*pe

therefor light with wavenumber k=2m/A cannot
propagate through the medium. Instead it is
resonantly coupled to a wave with wavenumber
k=-21/A, i.e. a backwards traveling wave: The
medium acts as a reflector for specific
wavelengths, this is the principle behind high-
reflectivity dielectric coatings.

Ch 6,30




Alternative Methods

e
—=

In our previous method we solved the 1D wave
equation for all frequencies of plane waves tfo
get the dispersion relation.

Alternatively we can consider wave propagation
in the material, impose boundary conditions at
the interfaces and require self-consistent
solutions to get the dispersion relation - We will
apply this method for a solution in 2D to the
dielectric stack problem

Ch 6,31




Boundary Conditions

—

—=

When an EM wave propagates across an

interface, Maxwell’s equations must be satisfied

at the interface as well as in the bulk

materials. The constraints necessary for this to
occur are called the “boundary conditions”

Y{B dA =

fg'dS:/J'dA—Fi/EE'dA
L4 dt

€1, M1

N\

€2, U2

/\

A

Y‘A
z

6.32




Boundary Conditions

e
—=

Gauss’ law can be used to find the boundary
conditions on the component of the electric field
that is perpendicular to the interface.

If the materials are dielectrics there will be no
free charge on the surface (q=0)

€1, K1 €2, U2
j{eE -dA = Zq

)
= E A €11, = ealo,

6.33




Boundary Conditions

e
—=

Faraday's law can be applied at the interface. If
the loop around which the electric field is
computed is made to have an infintesimal area
the right side will go to zero giving a

relationship between the parallel components of
the electric field

jI{E-ds:—i/B-dA
dt

€1, M1 €2, L2

J O
E2x,yL - Elx,yL — _% /BﬂdA Ela:,y — EQa:,y

6.34




Boundary Conditions

—
—_—

Gauss’ law for magnetism gives a relationship
between the perpendicular components of the
magnetic field at the infterface

€1, M1 €2, L2

%B-dA:O

Ble — BQZA =0 B1, = B,

6.35




Boundary Conditions

=
—=

Amperes law applied to a loop at the interface
that has an infintesimal area gives a relationship
between the parallel components of the
magnetic field. (Note that in most common
materials pP=Uo)

€1, M1 €2, 2
7{— ds—/JdA+—/eEdA B B
lx,y 2,y
Blaj,y BQ:cy - —
L MQL_/JdﬂnL /EE/F/? 0 s

6.36




Reflection at a Boundary

Plg
Nea of;
N
Ny
R

The reflection and transmission ncident
coefficients at an interface can be
found using the boundary conditions,
but they depend on the polarization of
the incident light

light

D lz — D 22z
Fizy = Bogy
® "s” polarization (senkrecht, aka TE or
vertical) has an E field that is
perpendicular to the plane of incidence Blz — BQZ
N\ "p” polarization (parallel aka TM or -
horizontal) has an E field that is H le,y — H 2x,y
parallel to the plane of incidence

6.37




Unit Cell Construct

— -

— - =

Label the forwards and backwards going waves in the n' b a
“unit cell”

an forward going wave at right side of nth unit cell
inside material 1 of form

bn backward going wave at right side of nth unit cell
inside material 1

cn forward going wave at right side of nth unit cell
inside material 2

dn backward going wave at right side of nth unit cell
inside material 2

a thickness of layer for material 1
b thickness of layer for material 2

N\ total thickness of unit cell

n number of unit cells fo the right of some arbitrary
origin

forward waves phase factor are expressed as e kz+iwt A ch 638




TE Continuity Equations

b a
For TE waves (E is out of the page) Ex ——
and HyxdE«/dz must be continuous at n Gn
B"n

each interface 5’ dn
Un1+bp1 = cpet=b 4 d, e kb
_iklzan—l + iklzbn—l — —Zk2zCn tha=b + Zk’de e —th2:b /\ b
=d
ch+d, = a,e*=*40p, e k=0 :| +

Z.]{)225671 — Zszdn — iklz@nGZklza — iklzbne—lkzza

There are 4 equations and 6 unknowns, so
these can be manipulated to eliminate cn
and d, in an expression of the form

()= b))
bn1)  \C D) \bn Ch 639




Unit Cell Equation (TE)

—
—_—

For TE waves _b,a,
SRCOICIE
= -
bn—l ¢ D bn <« <«
with dn b
. Nz M
A = etkza cos(ka,b) ! koz | Bz sin(ko,b) < >
2 klz k2z
I I /\=Cl+b
B = e—zklza |:§ (kiz - k;z) Sln(kgzb)
O = €Zk1za |:_% (:jz o Z;z) SlIl(kQ;J))]
[k k
D = emlz“[coskzbz(zz 1z)sinkzb]
(kb) = 5 (22 + 1 ) sinact)

Ch 6,40




Unit Cell Equation (TM)

—
—_—

For TM waves

()= 2) ()

with

A e fontiat) o 5 (1 T )|
B = ¢ thia [% (Z%ZZ — :g:i) Siﬂ(kgzb)_

O ikia [_% (Z?]z; _ Z?Z) Sm(/cgzb)}

D — eikiza [Cos(kgzb) — % <Z§Zji + ZgZZ) Sin(kzzb)]

——>

Cn Gn

- —
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Multiple Cell Propagation

From conservation of energy lasl2+ [b)l P, _a
2= |an-1l?+ |bnal? which means the ABCD cn ar
matrix is "unimodular”. o |

dn bn

For 2x2 matrices nz N

A BY ' 1 D -pB\ fN=ab
C D) T AD-BC\-C A

For unimodular matrices the
determinant is one, AD — BC =1, so

an \ D —B " ao
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Bloch Wave Solutions
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The propagating waves in the medium are bloch
waves with an amplitude that is periodic in A
and a phase given by Kz, so a bloch wave should

obey
A B An\ KA [ On
¢ D)\b,) " b,
requiring ez-KA:A+Di\/<A+D>21

2 2

2

or ez.KA_A+DiZ,\/1_(A+D)
2 2

A+ D

with the form ¢i&a = cosy +isiny = e Where cosy = 5

1 A+ D




Material Bandgaps

Contour plot Sign[Im[K(O,w]]
(stop bands are in black)
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Bragg Reflection

E—

If a wave is incident on a layered b a
material and cannot propagate o
because it is within the bandgap, the N
energy of the wave is reflected. dn  bn
Nz M

In the notation where the fields in . >
the nth unit cell of layer 1 are a,, b,Y| a /A=a+b
the reflection of a wave ap incident z
on the structure in material 1 will
have a reflection coefficient,

bo

Qo

rv =
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Bragg Reflection

E—

By requiring bn=0, i.e. no input at b a
the far end of the dielectric stack N

of N layers, we can solve for b, and ~
a, in terms of an. dn bn

N N2 M
ao o A B an
) \C D by ~ « >
()= ) () o hars
where | y4
Ap—1 o A B an a
b, 1) \C D) \b, bo
with the values of A, B, C and D a
previously found.

N
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Bragg Reflection
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For unimodular matrices, Chebyshev’ identity

A BYY 1  [AsinNKA —sin(N —1)KA Bsin NKA
C D)  sinKA Csin NKA Dsin NKA —sin (N — 1)KA
: A+D
with KA = cos™ ( —; )
SO
ap) 1 Asin NKA —sin (N — 1)KA Bsin NKA an,
bo) sin KA C'sin NKA Dsin NKA —sin(N —1)KA) \ 0
bo C'sin NKA
rN = — =

a, Asin NKA —sin(N —1)KA
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Structure Reflectivity in Air

—

Consider an infintesimal thickness of Ein ntE. nt E;

material 1 on top of the layered

stucture. It has reflectivity rq on

the air side (from air to material 1), ‘E_
r

and reflectivity ry on the structure
side.

<—I=O—>

EC - tEin - raerEc and Er - ralEin + rNtalEc

A tE;, 1>
giving = and Er:(ral+ a )E

1+ Yg1rn

Tal + N
14+ r,rn

so the reflectivity of the structure in air is 7=
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Spectral Reflectivit

—

Spectral reflectivity Ry at normal incidence of an N layer sta
at Wo, np=2.5, ni=1.5)

Y

ck (quarter wave
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Summary
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