
Document info Ch 6,

Bloch waves and 
Bandgaps

Chapter 6
Physics 208, Electro-optics

Peter Beyersdorf

1



Ch 6,

Bloch Waves

There are various classes of boundary 
conditions for which solutions to the wave 
equation are not plane waves

Planar conductor results in standing waves

Waveguide and cavities results in modal 
structure

Periodic materials result in Bloch waves
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E(z) = 2E0 sin (kzz) cos (ωt)

E(x, y, z) = Enm(x, y)e−ikz

!E(!r) =
∫ 2π/Λ

0
E( !K,!r)e−i "K·"rd !K
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Class Outline

Types of periodic media

dispersion relation in layered materials

Bragg reflection

Coupled mode theory

Surface waves

3



Ch 6,

Periodic Media

Many useful materials and devices may have an 
inhmogenous index of refraction profile that is 
periodic

Dielectric stack optical coatings

Diffraction gratings

Holograms

Acousto-optic devices

Photonic bandgap crystals
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!E(!r) =
∫ 2π/Λ

0
E( !K,!r)e−i "K·"rd !K

Ch 6,

Bloch’s Theorem

Wave solutions in a periodic medium (Bloch waves) are 
different than in a homogenous medium (plane waves)

A correction factor E(K,r) accounts for the difference 
between plane wave solutions and Bloch wave 
solutions

Wave amplitude has a periodicity defined by the 
underlying medium, Ek(K,r)=Ek(K,r+Λ)

E(K,r) are normal modes of propagation

Λ
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Waves in Layered Media

For a wave normally incident on an 
isotropic layered material, we’ll find the 
“dispersion relationship” (ω vs K curve) 
for Bloch waves.  This will tell us about 
the behavior of waves in the material.

We’ll see the periodic structure reflects 
certain wavelengths.  This is referred to 
as Bragg reflection.

Λ
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Wave Equation in Layered Media

Starting with the wave equation

we will plug in the dielectric tensor written as a 
Fourier series with periodicity Λ

and an arbitrary wave

to get

ε(z) =
∑

l

εle
−i 2πl

Λ z

!E =
∫

!E0(k)e−i(kz+ωt)dk
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!∇×
(

!∇× !E
)

+ µε
∂2 !E

∂t2
= 0

∫
k2 !E0(k)e−ikzdk + ω2µ

∑

l

εle
−i 2πl

Λ z

∫
!E0(k)e−ikzdk = 0
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k′ = k +
2πl

Λ

for all k

and defining

with

gives

or

so

∫
k2 !E0(k)e−ikzdk + ω2µ

∑

l

εle
−i 2πl

Λ z

∫
!E0(k)e−ikzdk = 0

∫ (
k2 !E0(k)− ω2µ

∑

l

εl
!E0(k −

2πl

Λ
)

)
e−ikzdk = 0

k2 !E0(k)− ω2µ
∑

l

εl
!E0(k −

2πl

Λ
) = 0

12

∫
k2 !E0(k)e−ikzdk − ω2µ

∫ ∑

l

εl
!E0(k′ −

2πl

Λ
)e−ik′zdk′ = 0

Wave Equation in Layered Media
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Wave Equation in Layered Media

for all k

Is an infinite set of equations.  Consider equations for: 
kΛ/2π=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 …

k2 !E0(k)− ω2µ
∑

l

εl
!E0(k −

2πl

Λ
) = 0

coupled

Let K be the value value of k±2πl/Λ closest to ω2με0 in a series of coupled 
equations, where ε0 is the zeroth order Fourier coefficient of ε(z).
The whole series of equations for -∞<k<∞ can be treated instead as a 
series of coupled equations for 0<K<2π/Λ.  The solution to each set of 
equations for a value of K only contains terms at k=K±2πl/Λ, thus

K=0
K=0.2π/Λ

K=0.4π/Λ

→ 13
!E(z) =

∫
!E0(k)ei(kz+ωt)dk !E(K, z) =

∑

l

!E0(K − l
2π

Λ
)ei(K−l 2π

Λ )z−iωt
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Bloch Waves in Layered Media

The Bloch waves are normal modes of propagation so

and each mode is composed of plane wave 
components of amplitude E(K±2πl/Λ).  To find these 
amplitudes we consider the dispersion relation

Since this represents an infinite set of coupled 
equations, we will examine this expression and 
isolate the equations that couple most strongly to 
E0(K), ignore the rest and solve for E0(k)

k2 !E0(k)− ω2µ
∑

l

εl
!E0(k −

2πl

Λ
) = 0

!E(z) =
∫ 2π/Λ

0
E(K, z)e−iKzdK

14
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Field Components in Layered Media

or

k2 !E0(k)− ω2µ
∑

l

εl
!E0(k −

2πl

Λ
) = 0

k2 !E0(k)− ω2µεø !E0(k)− ω2µε1 !E0(k −
2π

Λ
)− ω2µε−1

!E0(k +
2π

Λ
)− . . . = 0

Allowing us to express the E0(K-2πl/Λ) amplitudes as

!E0(K) =
1

K2 − ω2µεø

(
ω2µε1 !E0(K − 2π

Λ
) + ω2µε−1

!E0(K +
2π

Λ
)− . . .

)

!E0(K − 2π

Λ
) =

1
(
K − 2π

Λ

)2 − ω2µεø

(
ω2µε1 !E0(K − 2

2π

Λ
) + ω2µε−1

!E0(K)− . . .

)

!E0(K +
2π

Λ
) =

1
(
K + 2π

Λ

)2 − ω2µεø

(
ω2µε1 !E0(K) + ω2µε−1

!E0(K + 2
2π

Λ
)− . . .

)

…
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Resonant Coupling of Waves

Momentum of forwards wave 
with wavenumber k is ℏk, for 
backwards wave it is -ℏk.  
Grating can be thought of as superposition of 
forwards and backwards going waves, with momenta 
±ℏkg, where kg=2π/Λ.  For light to couple between 

forwards and backwards waves, momentum must be 
conserved ℏk+mℏkg=-ℏk

This is like a collision of a forward photon with m 
phonons producing a backwards photon

kg

k

-k

16
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Field Components in Layered Media

!E0(K) =
1

K2 − ω2µεø

(
ω2µε1 !E0(K − 2π

Λ
) + ω2µε−1

!E0(K +
2π

Λ
)− . . .

)

!E0(K − 2π

Λ
) =

1
(
K − 2π

Λ

)2 − ω2µεø

(
ω2µε1 !E0(K − 2

2π

Λ
) + ω2µε−1

!E0(K)− . . .

)

!E0(K +
2π

Λ
) =

1
(
K + 2π

Λ

)2 − ω2µεø

(
ω2µε1 !E0(K) + ω2µε−1

!E0(K + 2
2π

Λ
)− . . .

)

(
K − l

2π
Λ

)2
! ω2µεø

K2 − ω2µεø = 0

In the case where ## # # # # # i.e. the forward wave 
momentum cannot be converted to the backward wave 
momentum by the addition of a kick from the grating in the 
layered material, only the l=0 term is significant and the 
dispersion relation
for any value of K is uncoupled to that for other values of K, 
and gives## # # # # meaning the phase velocity is that due 
to the average index of refraction for the medium

K2 !E0(K)− ω2µ
∑

l

εl
!E0(K − 2πl

Λ
) = 0

17
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Coupling of Field Components

In the case where# #  # # # #  for some non-zero value of 
l=m this l=m term is also significant and for the dispersion 
relation

we need only consider two values of K, i.e. K and K-2πm/Λ.

l=0

l=-1

l=+1

!E0(K +
2πl

Λ
) =

1
(
K + 2πl

Λ

)2 − ω2µεø

(
ω2µε1 !E0(K +

2π(l − 1)
Λ

) + ω2µε−1
!E0(K + 2

2πl

Λ
)− . . .

)

!E0(K) =
1

K2 − ω2µεø

(
ω2µε1 !E0(K − 2π

Λ
) + ω2µε−1

!E0(K +
2π

Λ
)− . . .

)

!E0(K − 2π

Λ
) =

1
(
K − 2π

Λ

)2 − ω2µεø

(
ω2µε1 !E0(K − 2

2π

Λ
) + ω2µε−1

!E0(K)− . . .

)

!E0(K +
2π

Λ
) =

1
(
K + 2π

Λ

)2 − ω2µεø

(
ω2µε1 !E0(K) + ω2µε−1

!E0(K + 2
2π

Λ
)− . . .

)

K2 !E0(K)− ω2µ
∑

l

εl
!E0(K − 2πl

Λ
) = 0

(
K − l

2π
Λ

)2
≈ ω2µεø
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Dispersion Relation in Layered Media

A nontrivial solution to these coupled equations only exists if 

k2 !E0(k)− ω2µ
∑

l

εl
!E0(k −

2πl

Λ
) = 0The dispersion relation

Considering only terms with E(K) and E(K-2πm/Λ) gives

and for ε-m=εm* in a lossless medium, since

(
K2 − ω2µεø

)
#E0(K)− ω2µεm

#E0(K − 2πm

Λ
) = 0

[(
K − 2πm

Λ

)2

− ω2µεø

]
#E0

(
K − 2πm

Λ

)
− ω2µε−m

#E0(K) = 0

∣∣∣∣
K2 − ω2µεø −ω2µεm

−ω2µε−m

(
K − 2πm

Λ

)2 − ω2µεø

∣∣∣∣ = 0

(
K2 − ω2µεø

)
((

K − 2πm

Λ

)2

− ω2µεø

)
−

(
ω2µ|εm|

)2 = 0 19

εm =
1
Λ

∫ Λ

0
ε(z)e−i2πmz/Λdz
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Dispersion Relation in Layered Media

which can be solved for K, the Bloch wave vector for a wave 
of frequency ω

graph of dispersion relationship (figure 6.2)

(
K2 − ω2µεø

)
((

K − 2πm

Λ

)2

− ω2µεø

)
−

(
ω2µ|εm|

)2 = 0

20

K =
mπ

Λ
±

√√√√(mπ

Λ

)2
+ εøµω2 ±

√

(|εm|µω2)2 +
(

2πm

Λ

)2

εøµω2
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Bandgaps in Layered Media

When the Bragg condition is met (K-2πm/Λ=ω2ε0 μ)
real solutions exist for# # # # # # # and

Solutions for 

are complex, this region is called the forbidden 
band.  At the center of the forbidden band 
where## # # # # #  and## # # # # , i.e.

the dispersion relation gives

ω2 <
K2

µ (εø + |εm|) ω2 >
K2

µ (εø − |εm|)

K2

µ (εø + |εm|) < ω2 <
K2

µ (εø − |εm|)

K2 − ω2µεø = 0
(
K − m

2π
Λ

)2
≈ ω2µεø ω2 =

(mπ)2

Λ2µεø

K =
mπ
Λ

(
1 ± i

|ε1|
2εø

)

21

K =
mπ

Λ
±

√√√√(mπ

Λ

)2
+ εøµω2 ±

√

(|εm|µω2)2 +
(

2πm

Λ

)2

εøµω2
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Bandgap Properties

The forbidden band has a width in ω, called the 
bandgap that is

And at its center has an attenuation coefficient 

Thus, the greater the Fourier coefficient |εm| the 
larger the bandgap and the stronger the 
attenuation in the gap.

∆ωgap = ω
|εm|
εø

22

Im[k] =
mπ
2Λ
∆ωgap

ω
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Bloch Waveform

With our calculated dispersion relationship

we can choose a frequency ω, calculate K(ω) and 
solve

for E(K) and E(K-2πm/Λ) giving the waveform of the 
Bloch mode at frequency ω (or wavenumber K(ω)) 
considering only these two components

(
K2 − ω2µεø

)
#E0(K)− ω2µεm

#E0(K − 2πm

Λ
) = 0

[(
K − 2πm

Λ

)2

− ω2µεø

]
#E0

(
K − 2πm

Λ

)
− ω2µε−m

#E0(K) = 0

K =
mπ

Λ
±

√√√√(mπ

Λ

)2
+ εøµω2 ±

√

(|εm|µω)2 +
(

2πm

Λ

)2

εøµω2

!E(K, z) ≈
∑

l=0,m

!E0(K − l
2π

Λ
)e−i(K−l 2π

Λ )z−iωt

23
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Bloch  Waveform Example

Consider a periodic structure 
consisting of alternating layers of 
high index and low index material
(nh=1.8, nl=1.5).

Find the waveform in the material 
for a wave of wavelength λ=2Λ

nh nl

Λ=λ/2

24
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Bloch  Waveform Example

      

Example solved using 
“Mathematica”

25



Ch 6,

Bloch  Waveform Example
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Bloch  Waveform Example
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DispersionRelation

Dispersion relation without 
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Bloch  Waveform Example
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Bloch  Waveform Example
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High-Reflector Stack

A series of alternating high-index, 
low-index layers, each λ/4 
in thickness has

# # # # # # # and ε1≠0, and

therefor light with wavenumber k=2π/λ cannot 
propagate through the medium.  Instead it is 
resonantly coupled to a wave with wavenumber 
k=-2π/λ, i.e. a backwards traveling wave:  The 
medium acts as a reflector for specific 
wavelengths, this is the principle behind high-
reflectivity dielectric coatings.

(
k − 2π
Λ

)2
= ω2µεø ω2 =

π2

Λ2µεø

30
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Alternative Methods

In our previous method we solved the 1D wave 
equation for all frequencies of plane waves to 
get the dispersion relation.

Alternatively we can consider wave propagation 
in the material, impose boundary conditions at 
the interfaces and require self-consistent 
solutions to get the dispersion relation - We will 
apply this method for a solution in 2D to the 
dielectric stack problem

31



6.

∮
B · dA = 0

∮
E · ds = − d

dt

∫
B · dA

∮
εE · dA =

∑
q

∮
B

µ
· ds =

∫
J · dA +

d

dt

∫
εE · dA

When an EM wave propagates across an 
interface, Maxwell’s equations must be satisfied 
at the interface as well as in the bulk 
materials.  The constraints necessary for this to 
occur are called the “boundary conditions”

32

ε1, µ1 ε2, µ2

Boundary Conditions

ẑ
ŷ
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∮
B · dA = 0

∮
E · ds = − d

dt

∫
B · dA

∮
εE · dA =

∑
q

Boundary Conditions

Gauss’ law can be used to find the boundary 
conditions on the component of the electric field 
that is perpendicular to the interface.  

If the materials are dielectrics there will be no 
free charge on the surface (q=0)

33∴→
0

∮
B

µ
· ds =

∫
J · dA +

d

dt

∫
εE · dA

ε1, µ1 ε2, µ2

ε1E1z = ε2E2zε1E1zA− ε2E2zA =
∑

q
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34

∮
B

µ
· ds =

∫
J · dA +

d

dt

∫
εE · dA

∴→
0

ε1, µ1 ε2, µ2

Faraday’s law can be applied at the interface.  If 
the loop around which the electric field is 
computed is made to have an infintesimal area 
the right side will go to zero giving a 
relationship between the parallel components of 
the electric field

E1x,y = E2x,yE2x,yL− E1x,yL = − d

dt

∫
B · dA
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∮
B

µ
· ds =

∫
J · dA +

d

dt

∫
εE · dA

∮
B · dA = 0

∮
E · ds = − d

dt

∫
B · dA

∮
εE · dA =

∑
q

Boundary Conditions

Gauss’ law for magnetism gives a relationship 
between the perpendicular components of the 
magnetic field at the interface

35
∴

ε1, µ1 ε2, µ2

B1zA−B2zA = 0 B1z = B2z
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∮
B · dA = 0

∮
E · ds = − d

dt

∫
B · dA

∮
εE · dA =

∑
q

Boundary Conditions

Ampere’s law applied to a loop at the interface 
that has an infintesimal area gives a relationship 
between the parallel components of the 
magnetic field.  (Note that in most common 
materials μ=μo)

36

∮
B

µ
· ds =

∫
J · dA +

d

dt

∫
εE · dA

∴→
0

→
0

ε1, µ1 ε2, µ2

B1x,y

µ1
L− B2x,y

µ2
L =

∫
J · dA +

d

dt

∫
εE · dA

B1x,y

µ1
=

B2x,y

µ2
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Reflection at a Boundary

37

Plane of the interface (here the 
yz plane) (perpendicular to page)

ni

nt

θi θr

θt

Ei Er

Et

Interface

x

y

z

“s” polarization (senkrecht, aka TE or 
vertical) has an E field that is 

perpendicular to the plane of incidence

“p” polarization (parallel aka TM or 
horizontal) has an E field that is 
parallel to the plane of incidence 

The reflection and transmission 
coefficients at an interface can be 
found using the boundary conditions, 
but they depend on the polarization of 
the incident light  

E1x,y = E2x,y

B1z = B2z

H1x,y = H2x,y

D1z = D2z
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Unit Cell Construct
Label the forwards and backwards going waves in the nth 
“unit cell” 

an forward going wave at right side of nth unit cell 
inside material 1  of form

bn backward going wave at right side of nth unit cell 
inside material 1

cn forward going wave at right side of nth unit cell 
inside material 2

dn backward going wave at right side of nth unit cell 
inside material 2

a thickness of layer for material 1

b thickness of layer for material 2

Λ total thickness of unit cell
n number of unit cells to the right of some arbitrary 
origin

forward waves phase factor are expressed as e-ikz+iωt Λ

an

bn

cn

dn

n2 n1

Λ=a+b

ab

ẑ
ŷ

38
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TE Continuity Equations

For TE waves (E is out of the page) Ex 
and Hy∝∂Ex/∂z must be continuous at 

each interface

an

bn

cn

dn

n2 n1

Λ=a+b

ab

an−1 + bn−1 = cneik2zb + dne−ik2zb

−ik1zan−1 + ik1zbn−1 = −ik2zcneik2zb + ik2zdne−ik2zb

cn + dn = aneik1za + bne−ik1za

ik2zcn − ik2zdn = ik1zaneik1za − ik1zbne−ik2za

There are 4 equations and 6 unknowns, so  
these can be manipulated to eliminate cn 
and dn in an expression of the form

(
an−1

bn−1

)
=

(
A B
C D

) (
an

bn

)

39
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Unit Cell Equation (TE)
For TE waves

with

an

bn

cn

dn

n2 n1

Λ=a+b

ab
(

an−1

bn−1

)
=

(
A B
C D

) (
an

bn

)

A = eik1za

[
cos(k2zb) +

i

2

(
k2z

k1z
+

k1z

k2z

)
sin(k2zb)

]

B = e−ik1za

[
i

2

(
k2z

k1z
− k1z

k2z

)
sin(k2zb)

]

C = eik1za

[
− i

2

(
k2z

k1z
− k1z

k2z

)
sin(k2zb)

]

D = e−ik1za

[
cos(k2zb)−

i

2

(
k2z

k1z
+

k1z

k2z

)
sin(k2zb)

]

40
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Unit Cell Equation (TM)
For TM waves

with

an

bn

cn

dn

n2 n1

Λ=a+b

ab
(

an−1

bn−1

)
=

(
A B
C D

) (
an

bn

)

A = eik1za

[
cos(k2zb) +

i

2

(
n2

1k2z

n2
2k1z

+
n2

2k1z

n2
1k2z

)
sin(k2zb)

]

B = e−ik1za

[
i

2

(
n2

2k1z

n2
1k2z

− n2
1k2z

n2
2k1z

)
sin(k2zb)

]

C = eik1za

[
− i

2

(
n2

2k1z

n2
1k2z

− n2
1k2z

n2
2k1z

)
sin(k2zb)

]

D = e−ik1za

[
cos(k2zb)−

i

2

(
n2

1k2z

n2
2k1z

+
n2

2k1z

n2
1k2z

)
sin(k2zb)

]

41
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Multiple Cell Propagation
From conservation of energy |an|2+ |bn|
2= |an-1|2+ |bn-1|2 which means the ABCD 
matrix is “unimodular”.

For 2x2 matrices

For unimodular matrices the 
determinant is one,## # # # # # , so

an

bn

cn

dn

n2 n1

Λ=a+b

ab

(
A B
C D

)−1

=
1

AD −BC

(
D −B
−C A

)

AD −BC = 1
(

an

bn

)
=

(
D −B
−C A

)n (
a0

b0

)
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The propagating waves in the medium are bloch 
waves with an amplitude that is periodic in Λ 
and a phase given by Kz, so a bloch wave should 
obey

requiring

  
or

with the form# # # # # # # # # # where

giving

Bloch Wave Solutions

(
A B
C D

) (
an

bn

)
= eiKΛ

(
an

bn

)

eiKΛ =
A + D

2
± i

√

1−
(

A + D

2

)2

eiKΛ =
A + D

2
±

√(
A + D

2

)2

− 1

K =
1
Λ

cos−1

(
A + D

2

)
cos ψ =

A + D

2
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Brewster’s angle

Contour plot Sign[Im[K(θ,ω]]
(stop bands are in black)

Material Bandgaps
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Bragg Reflection

If a wave is incident on a layered 
material and cannot propagate 
because it is within the bandgap, the 
energy of the wave is reflected.

In the notation where the fields in 
the nth unit cell of layer 1 are an, bn, 

the reflection of a wave a0 incident 
on the structure in material 1 will 
have a reflection coefficient, 

Λ

an

bn

cn

dn

n2 n1

Λ=a+b

ab

ẑ
ŷ

aN

a0

b0

rN =
b0

ao
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Bragg Reflection

By requiring bN=0, i.e. no input at 
the far end of the dielectric stack 
of N layers, we can solve for bo and 
ao in terms of an.

where

with the values of A, B, C and D 
previously found.

Λ

an

bn

cn

dn

n2 n1

Λ=a+b

ab

ẑ
ŷ

aN

a0

b0

(
a0

b0

)
=

(
A B
C D

)N (
aN

bN

)

(
an−1

bn−1

)
=

(
A B
C D

) (
an

bn

)
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Bragg Reflection

For unimodular matrices, Chebyshev’ identity

with

so 

(
A B
C D

)N

=
1

sinKΛ

(
A sinNKΛ− sin (N − 1)KΛ B sinNKΛ

C sinNKΛ D sinNKΛ− sin (N − 1)KΛ

)

KΛ = cos−1

(
A + D

2

)

(
a0

b0

)
=

1
sinKΛ

(
A sinNKΛ− sin (N − 1)KΛ B sinNKΛ

C sinNKΛ D sinNKΛ− sin (N − 1)KΛ

) (
an

0

)

rN =
b0

ao
=

C sinNKΛ
A sinNKΛ− sin(N − 1)KΛ
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Structure Reflectivity in Air

Consider an infintesimal thickness of 
material 1 on top of the layered 
stucture.   It has reflectivity ra1 on 
the air side (from air to material 1), 
and reflectivity rN on the structure 
side.

Ein Ec Et

Er
l=0

andgiving

r,tr,t

so the reflectivity of the structure in air is

andEc = tEin − ra1rN Ec Er = ra1Ein + rNta1Ec

Ec =
tEin

1 + ra1rN
Er =


ra1 +

t2
a1

1 + ra1rN


 Ein

r =
ra1 + rN

1 + ra1rN
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N=1 N=2

N=4 N=8

Spectral Reflectivity
Spectral reflectivity RN at normal incidence of an N layer stack (quarter wave 
at ω0, nh=2.5, nl=1.5)

Rn = |rN |2 =
∣∣∣∣

C sinNKΛ
A sinNKΛ− sin(N − 1)KΛ

∣∣∣∣
2
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Summary
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