
Basic Biostatistics by B. Burt Gerstman 
Summary Points and Objectives 

Chapter 1: Measurement  
 Biostatistics is more than a compilation of computational techniques!  
 Identify the main types of measurement scales: quantitative, ordinal, and categorical.  
 Understand the layout of a data table (observations, variables, values) 
 Appreciate the essential nature of data quality (GIGO principle). 

Chapter 2: Types of Studies 
 Understand the difference between experimental and non-experimental (“observational”) designs 

 

      

    
  
 Understand the procedure for a simple random sample 
 Understand the procedure for randomizing a treatment 
 Define “confounding” and “lurking variable”  
 List preconditions for confounding  

Chapter 3: Frequency Distributions 
 Create and interpret stemplots  
 Describe distributional shape, location, and spread; check for outliers  
 Create frequency tables containing frequency, relative frequency, cumulative frequency using 

uniform or non-uniform class intervals 

Chapter 4: Summary Statistics 
 Appreciate that great care must be taken in interpreting and reporting statistics! 

 Sample mean: ∑ ix  =
n

x 1

 Median: Form an ordered array. The median is the value with a depth of  
2

1+n
 ; when n is odd, 

average the two middle values.  
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 Quartiles (Tukey’s hinges): Divide the ordered array at the median; when n is odd, the median 
belongs to both the low group and the high group. Q1 is median of the low group. Q3 is the 
median of the high group.  

 Five-point summary: minimum, Q1, median, Q3, maximum 
 IQR = Q3 − Q1 
 Boxplot: plot median and quartiles (box); determine upper and lower fences: FL = Q1 − 1.5·IQR,  

FU = Q3 + 1.5·IQR; plot outside values; draw whiskers from hinges to inside values 
 Understand the strengths and limitations of the mean, median, and mode 

 Sample variance: ∑ −
−

= 22 )(
1

1 xx
n

s i   

 Sample standard deviation:  2ss = ; direct formula ∑ −
−

= 2)(
1

1 xx
n

s i  

 Select descriptive statistics suitable for distributional shape 

Chapters 5: Probability Concepts  
 Understand and use in practice these basics rules for probabilities:  

(1) 0 ≤ Pr(A) ≤ 1  
(2) Pr(S) = 1 
(3) Pr(Ā) = 1 − Pr(A) 
(4) Pr(A or B) = Pr(A) + Pr(B) for disjoint events  

 Use probability mass function (pmfs) to find probabilities for discrete random variables  
 Use probability density function pdfs to find probabilities for continuous random variables  
 Optional: Understand the more advances rules for probabilities: (5) Independence rule (6) General 

rule of addition (7) Conditional probability definition (8) General rule of multiplication (9) Total 
probability rule (10) Bayes’ theorem 

Chapter 6: Binomial Distributions 
 Identify a binomial random variable and its parameters: X~b(n,p) 

 Calculate and interpret binomial probabilities: xnx
x qpC −  where nxX == )Pr(

)!!
!

nx
n
−

  
( x

Cxn =

 Calculate and interpret expected values (mean) and standard deviation for binomial random 
variables: µ = np and npq=σ  where q = 1 – p.  

Chapter 7: Normal Distributions  
 Characterize and sketch, Normal distributions with parameters μ and σ: X ~ N(μ, σ) 
 Use the 68–95–99.7 rule to determine approximate probabilities for Normal random variables 
 Characterize and sketch Standard Normal random variable Z ~ N(0,1); and understanding Table B 

 Finding Normal probabilities (1) State (2) Standardize
σ
μ−

=  (3) Sketch (4) Table B  
xz

 Finding percentile values on a Normal distribution: (1) State (2) Sketch (3) Table B (4) 
Unstandardize: x = μ + zpσ 

Chapter 8: Introduction to Statistical Inference 
 Define statistical inference; list the two primary forms of statistical inference 
 Distinguish parameters from statistics! 
 Understand the method of simulating a sampling distribution of a mean 
 Characterize the sampling distribution of x  from a Normal population: x  ~ N(μ, nσ ) 

 Understand the standard error of x  in relation to the square root law: 
n

SEx
σ

=   
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 Appreciate that the central limit theorem assures x  ~ N(μ, nσ ) when the sample size is 
moderate to large 

 Know that the law of large numbers assures that x  approaches μ as the sample gets large 

Chapter 9: Basics of Hypothesis Testing 
 Appreciate that hypothesis testing looks for evidence against the claim of H0 and understand the 

meaning of each step of the procedure: 
Step A. H0 and Ha   
Step B. Test statistic   
Step C. P-value   
Step D. Optional: Significance level 

 See how hypothesis testing relates to the sampling distribution of x   
 Conduct one sample tests of means when σ is known:  

Conditions: SRS, Normal population or moderate to large sample size.  

(A.) H0: μ = μ0 (B.) 
x

z
SE

x 0μ−=  where 
nxSE σ

=   (C.) P-value and interpretation 

 Define: type I error; type II error; beta, power  
 Determine the power and sample size requirements of a test (these objective are covered / 

reviewed under the Chapter 11 objectives) 

Chapter 10: Basics of Confidence Intervals 
 Appreciate how a confidence interval seek to locate a parameter with given margin of error  
 See how confidence intervals estimation relates to the sampling distribution of  x   
 Calculate and interpret confidence intervals for μ at various levels of confidence when σ is known: 

Conditions: SRS, Normal population or moderate to large sample size.  

Formula: xSE⋅− 2/α  where zx ± 1 nxSE σ
=  

 Determine sample size requirements for estimating μ with given level of confidence and margin of 
error (see Chap 11 for formula) 

 Understand the relationship between confidence interval location and hypothesis testing  

PART II: QUANTITATIVE RESPONSE VARIABLE 

Chapter 11: Inference about a Mean 
 Quantitative response variable, no explanatory variable per se (single sample or paired samples) 
 Understand when to use t procedures  
 Sketch t distributions; use Table C to look up t values and associated probabilities  
 Conduct one-sample and paired-sample t tests (conditions: SRS, population Normal or large sample): 

(A.) H0: μ = μ0  (B.) 
x

statt
SE

x 0μ−=  where 
n
sSEx =  with n – 1 df  C. P-value and interpretation 

 Calculate and interpret one-sample and paired-sample confidence interval for μ: 
Formula: xSE⋅

−1, α   ntx ±
− 21

 Recognize paired samples and adapt the one-sample t procedures to paired samples 
 Evaluate the Normality assumption in small, medium, and large samples 
 Conduct sample size and power analyses: 

o to limit margin of error m when estimating μ, use
2

1 2
⎜
⎝
⎛=

σ
⎟
⎠
⎞

− m
zn α  
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o to detect a difference of Δ with stated power and α, use
( )

2

2
11

2
2

Δ

+
=

−− αβσ zz
n  

o to determine the power of a test to detect Δ , ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
+−Φ=− − σ

β α
nz ||1

21  

Chapter 12: Comparing Independent Means 
 Quantitative response variable, binary explanatory variable (two independent samples) 
 Compare group means, standard deviations, sample sizes 
 Compare group distributions graphically (e.g., side-by-side boxplots, side-by-side stemplots) 
 Conduct independent t test: (conditions: independent samples and Normality or large samples) 

(A.) H0: μ1 = μ2   (B.) 
21 xx

t
−

stat
21

SE
xx −

=  where 
21

SE xx =−

2
2

2
1

21 n
s

n
s

+  with dfconservative = smaller of (n1 – 1) 

or (n2 – 1) [use dfWelch when working with a computer] (C.) P-value and interpretation 
 Calculate and interpret (1 −α)100% confidence interval for μ1 − μ2 :  

Formula: )()
21,21 xdf SEtxx −±− α )((

21x −  

 Optional: Be aware and understand the historical relevance of equal variance (“pooled”) t procedures 

where ⎟⎟
⎞

+
11
nn

 where 
⎠

⎜⎜
⎝

⎛
=

21

2
pooledsSE

2

21

2
2
112

pooled df
sdf ⋅

= 2

df
sdfs

+
⋅+  and df = (n1 − 1) + (n2− 1)  

 Power and sample size 

 To estimate μ1 − μ2 with margin of error m, use 2
1 2

m

α−
 in each group 

222 z
n

σ
=

 To test H0: μ1 = μ2  to detect Δ at given (1–β) and α:  use 
( )

2
1 2−

n  in each group  
2

1
22

Δ

+
=

− αβσ zz

 If it is not possible to study groups of equal size, then determine n by the above formulas, fix the 

size of n1, and have
nn

n
−

= 1

2
. nn

1
2

Chapter 13: ANOVA 
 Quantitative response variable, categorical explanatory variable (k independent samples) 
 Always start with descriptive and exploratory comparisons! 
 ANOVA test (conditions: independent samples, normality, equal variance) 

(A.) H0: μ1 = μ2 = … = μk versus Ha: at least two of the population means differ  
(B.) Fstat with dfB and dfW from ANOVA table  
(C.) P-value and interpretation 
 

Variance Sum of Squares df Mean Square 

Between 
groups 

( )∑
=

−=
k

i
iiB xxnSS

1

2  dfB = k − 1 
B

B

df
SSMSB =  

Within 
groups ∑

=

−=
k

i
iiW snSS

1

2)1(  dfW = N − k 
W

W

df
SSMSW =  

Total SST = SSB + SSW df = dfB + dfW  
 

 
MSW
MSBF =stat  with dfB  and dfW  
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 Use post-hoc procedures such as the least squares difference method to delineate significant 

differences (A.) H0: μi = μj for groups i and j (B.)  
ji xx −

stat
ji

SE
xx

t
−

=  where 

⎟
⎟+

nn
11 and df = N – k (C.) P-value and interpretation 
⎠

⎞
⎜
⎜
⎝

⎛
=−

ji
xx MSWSE

ji

 Recognize the problem of multiple comparisons and use Bonferroni method to keep the the 
family-wise error rate in check (when appropriate): PBonf = PLSD × c where c represents the number 
of post hoc comparisons made.  

 Assess the equal variance assumption graphically, by comparing group standard deviations, and 
with Levene’s test of H0: σ2

1 = σ2
2 = … = σ2

k. 
 Use robust non-parametric ANOVA (i.e., the Kruskal-Wallis test) when necessary. 

Chapter 14: Correlation and Regression 
 
 Quantitative explanatory variable; quantitative response variable 
 Linear relations only! 
 Start with a scatterplot. Describe form, direction, and strength. Also check for outliers.  
 Correlation does not necessarily indicate causation; beware of lurking variables. 
 Correlation coefficient r is always between −1 and 1; it quantifies the direction (positive/negative) and 

strength of an association. As rules of thumb: |r| < 0.3 suggests weak strength and |r| > 0.7 suggests 
strong strength (“grain of salt” no firm cutoffs, and best used merely as a screening tool). 

Formula: YX zzr ∑=
1

n −1
  

[Use calculator or software tool to check calculations.] 
 Inferences about population correlation coefficient ρ: 

To test H0: ρ = 0, use 
rSE

rt =stat where
2

1
−
−

=
n

r  and df = n – 2  
2

SEr

Confidence interval for ρ: 
ϖ
ϖrLCL −

=
r−1

  and 
ϖr+1
ϖr +

=UCL  where 
dftdf +−

2
1, 2

α

tdf
=

−
2

1, 2
α

ϖ  

X

Y

s
srb = Least squares regression model: bxay +=ˆ  where  and xbya −= .  

 Slope estimate b is the key statistic in all this, representing the predicted change in Y per unit X. 
 Inference about population slope β:  

Standard error of the regression ∑−
= 2

| residuals
2

1
n

s xY with df = n – 2 

 (1 −α)100% confidence interval for β = b ± (tn-2,1-α/2)(SEb) where 
X

xY
b sn

s
SE

⋅−
=

1
|  

To test H0: β = 0, use 
b

b

xbxbay +++= 2211ˆ

SE
t =stat  

Optional: An ANOVA procedure can be used to test H0: β = 0 using an Fstat (pp. 321–324) 

Chapter 15: Multiple Regression 
 Multiple regression is an extension of simple regression; students should master simple regression 

before moving on to multiple regression. 
 The quantitative response variable Y depends on multiple explanatory variables X1, X2, … Xk via this 

model: kk xb+ . 
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 Categorical explanatory variables can be entered into the model if coded with indicator “dummy” 
variables. 

 The computer uses a least squares criterion to fit a regression surface by minimizing ∑residuals2.  
 The key statistics are the slope estimates, bis, representing predicted changes in Y per unit Xi, adjusting 

for the other explanatory variables in the model. 
 Interpret confidence intervals for each βi  
 Interpret t tests for each H0: βi = 0. 
 Residuals are examined to assess linearity, independence, normality, equal variance.  
 Optional analysis of variance derives: 

 
 Sum of Squares df Mean Square 
Regression ( )∑ − 2ˆ yyi  k  regression df

regression SS  

Residual 
“error” 

( )∑ − 2ˆ ii yy  n − k − 1 
residualdf
residual SS  

Total ( )∑ − 2yyi  n − 1  

 residual MS
 regression MS

stat =F  with k and n − k − 1 dfs  

Model fit (of secondary concern) is quantified with 
Total Squares of Sum

Regression Squares of Sum2 =R . 

PART III CATEGORICAL RESPONSE VARIABLE 

Chapter 16: Inference about a Proportion 
 Single sample; binary outcome.  
 Sample proportion p̂  is viewed in the context of a binomial numerator (x) and constant 

denominator (n); inference are directed toward binomial parameter p 
 p̂  represents incidence or prevalences, depending how data are accrued 
 Hypothesis test (large samples) 

(A.) H0: p = p0 (B.) 
nqp

ppzstat
00

0ˆ −
=  (C.) P-value and interpretation 

Optional continuity-correction
nq

pp
z cstat

00

1

,
|ˆ| −

=
p

n20 −
 

  Hypothesis test (small samples, e.g., less than 5 successes) 
(A.) H0: p = p0 (B.) Observed number of success (C.) P-value from “exact” binomial calculations 
(computer assisted) and interpretation 

 The power of the hypothesis test depends on assumed values for p0, p1, n, and α (p. 368) 
  (1 – α)100% confidence intervals for p by “plus-four” method (similar to Wilson’s):  

 n
qp ~

~~
zp~ 1± − 2

⋅α  where 
4
2~

+
+

=
n
xp  and pq ~1~ −=  

 With n < 10 use, use exact binomial procedure (computer) for confidence interval. 

 To limit the margin of error (m) when estimating p, use 2
1 2

m

α−
.   

**2 qpz
n =
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Chapter 17: Comparing Two Proportions 
 Binary response variable, binary explanatory variable (two independent groups) 

 
 Successes Failures Total 

Group 1  a1 b1 n1 
Group 2  a2 b2 n2 

Total m1 m2 N 

 
1

1
1ˆ

n
ap =  and 

2

2
2ˆ

n
ap = . Sample proportions 21 ˆ and ˆ pp reflect underlying parameters p1 and p2.  

 Hypothesis test, large samples: 
(A.) H0: p1 = p2   

(B.) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=

21

21
stat

11

ˆˆ

nn
qp

ppz  (or chi-square, next chapter)  

(C.) P-value and interpretation 
 Hypothesis test, small samples, use Fisher’s test (computer assisted) 
 Risk difference = 21 ˆˆ p - p ; “excess risk in absolute terms associated with exposure” 

(1 – α)100% confidence interval for p1 − p2  by plus-four method:  

21
~~

2121 )~ ~( zpp −±− α ppSE −⋅  where 
2
1~

+
+

=
i

i
i n

ap   and 
2

22

1

11~~ ~
~~

~
~~

21 n
qp

n
qpSE pp +=−   

 Relative risk
2

1
ˆ
ˆˆ
p
pRR = ; “excess risk in relative terms associated with exposure” 

 (1−α)100% CI for RR = 
RRSEzRR

e
ˆln

2
1

ˆln ⋅±
−α  where 

2211
ˆln

1111
nana

SE RR −+−=  

 Systematic sources of error due to selection bias, information bias, and confounding! 
 The power of testing H0: p1 = p2 depends on p1, p2, n1 and n2, and α. Use software to calculate sample 

size and power; encourage students to think about underlying “inputs”. 

Chapter 18: Cross-Tabulated Counts  
 Understand that data can come from naturalistic, cohort, or case-control samples.    
 Cross-tabulate counts from categorical response variable (C columns) and categorical explanatory 

variable (R rows). Example of R-by-2 table: 
 

 Successes Failures Total 
Group 1  a1 b1 n1 
Group 2  a2 b2 n2 

↕ ↕ ↕ ↕ 
Group R aR bR nR 

Total m1 m2 N 
 

 In naturalistic and cohort samples, report incidence (or prevalences) in each group: 
i

i
i n

ap =ˆ .  

 Characteristics of chi-square probability distributions (e.g., start at 0, asymmetrical, become 
increasingly symmetrical as the df increases)  

 Hypothesis test for association (large samples) 
(A.)  H0: no association in population (homogeneity of proportions)  
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(B.) ( )∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=

all

2
2
stat

i

ii

E
EOX  where 

 totaltable
alcolumn tot   totalrow ×

=iE  with df = (R – 1) (C – 1)  

(C.) P-value from chi-square table or program  and interpretation 
 Hypothesis test (small samples): use Fisher’s procedure when more than 20% of expected frequencies 

are less than 5 or any expected frequency is less than 1.  
 In naturalistic and cohort samples, use risk difference or risk ratio as measure of association.  
 Hypothesis test for trend (ordinal explanatory or response variable) 

(A.) H0: “no trend in population” (B.) Use program to calculate Mantel trend statistic (C.) P-value and 
interpretation 

 Case-control sample: population cases and random sample of population non-cases → do not calculate 
incidence or prevalences. Calculate odds ratio as estimate of population rate ratio (equivalent to the 
risk ratio when the outcome is rare). 

12

21

/
/ˆ

ba
baRO =    

(1 – α)100% CI for the OR = 
ROSEzRO

e
ˆln

2
1

ˆln ⋅±
−α  where 

2211
ˆln

1111
baba

SE RO +++=  

 Matched-pairs: 
 

 Case E+ Case E− 
Control E+ a b 
Control E− c d 

 

b
cRO =ˆ  ;  (1 – α)100% confidence interval for the OR = 

ROSEzRO
e

ˆln
2

1
ˆln ⋅±

−α  where 
bc

SE RO
11

ˆln +=  

Hypothesis test: (A.) H0: OR = 1 (B.) 
bc

bczstat +
−

=
2)(   (C.) P-value and interpretation; use exact 

binomial procedure when there are 5 or less discordant pairs 

Chapter 19: Stratified 2-by-2 Tables 
 Methods to mitigate confounding: randomization, restriction, matching, regression, stratification 
 Simpson’s paradox is an extreme form of confounding in which the direction of association is reversed 

by the confounding factor 
 Strata specific RRs are denoted with subscripts: RR1, RR2, …, RRK 
 See if strata-specific RRs provide the same “picture” as the crude RR. If not, this is evidence of 

confounding or interaction.  
 Heterogeneous strata-specific RRs suggest statistical interaction.  
 Chi-square test for interaction. Example considers RRs from two strata: 

(A.) H0: RR1 = RR2 (no interaction) (B.) Chi-square interaction statistics (various forms) (C.) P-value 
and interpretation 

 There are no statistical tests for confounding. 
 If there is confounding and no interaction), Mantel-Haenszel procedures are applied to summarize the 

RRs and test the association (pp. 468 – 472).  
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