San José State University

applet-magic.com
Thayer Watkins
Silicon Valley
& Tornado Alley
USA

The Ionization Potentials and Shielding of
the First Two Electrons in the Third Shell

The Bohr model of a hydrogen-like ion predicts that the total energy E of an electron is given by

E = −Z²R/n²

where Z is the net charge experienced by the electron, n is the principal quantum number and R is a constant equal to approximately 13.6 electron volts (eV). This formula is the result of the total energy being equal to

E = − Ze²/(2rn)

where e is the charge of the electron and rn is the orbit radius when the principal quantum number is n. The orbit radius is given by

rn = n²h/(Zmee²)

where h is Planck's constant divided by 2π and me is the mass of the electron.

Shell Structure

Electrons in atoms are organized in shells whose capacities are equal to 2m², where m is an integer. Thus there can be at most 2 electrons in the first shell, 8 in the second shell and 18 in the third shell. Here only the third shell is being considered. Here are all the ionization potentials for such ions. The values are for the elements for which the data is available in the CRC Handbook of Physics and Chemistry 82nd Edition (2001-2002). For elements above magnesium all of the electrons in the third shell have been removed except two.

The Ionization Potentials for the
First Two Electrons in the Third Shell
for the Elements Magnesium through Zinc
Proton
Number
Ionization
Potential
First
Electron
Ionization
Potential
Second
Electron
12 15.03528 7.64624
13 28.44765 18.82856
14 45.14181 33.49302
15 65.0251 51.4439
16 88.053 72.5945
17 114.1958 97.03
18 143.46 124.323
19 175.8174 154.88
20 211.275 188.54
21 249.798 225.18
22 291.5 265.07
23 336.277 308.1
24 384.168 354.8
25 435.163 403
26 489.256 457
27 546.58 511.96
28 607.06 571.08
29 670.588 633
30 738 698

The Ionization Potential of the First Electron
as a Function of Proton Number

An ion with only one electron in a shell is equivalent to the hydrogen atom but having a positive charge of Z instead of one, where Z is the proton number #p of the nucleus less the amount of shielding by the electrons in the inner shells. The Bohr theory applies to such system. According to the Bohr theory the ionization potential should be

IE = Z²R/n²

R is constant and n, the quantum number, is equal to 1. Thus the ionization potential should be proportional to Z²; where Z=(#p−ε). For the first electron in the third shell it is usually presumed that the ten electrons in the first and second shells shield exactly ten units of charge. Here is the plot of the relationship.

This appears to be a quadratic relationship but shifted; i.e. something proportional to (#p−ε)². Thus equation is then

IE = R(#p−ε)²
which can be expressed as
IE = R(#p² − 2#p*ε + ε²)

where R is the Rydberg constant, 13.6 eV.

The appropriate regression equation would be

IE = c0 + c1#p + c2(#p)²
in which
c1<0

The regression results are

IE =95.51755173 − 25.45411609#p + 1.561761077(#p)²
[143.7] [-384.3] [997.0]
R² = 0.99999944

The numbers in the square brackets are the t-ratios for the regression coefficients. For a regression coefficient to be statistically significantly different its magnitude must be greater than 2.0. As can be seen the regression coefficients for are highly significant.

The value of ε can be found as

ε = ½(−c1/c2) = 8.14917098

Thus the shielding of the first electron in the third shell by the ten electrons in the first and second shells is not 10. Instead it is 0.815 of that value. This could be due to the distributions of the charges of the two inner electrons, either their radial dispersion or their asymmetry.

The ionization potentials for the first and second electrons in the third shell are shown below. The pattern is the same but the values for the second electron are slightly below those of the first electron.

When the same procedures are applied to the data for the second electron in the third shell the regression results are

IE = 113.6959045 − 27.7558987#p + 1.574516774(#p)²
[100.5] [-246.2] [590.5]
R² = 0.999998232

The shielding ε that these coefficients imply is

ε = ½(−c1/c2) = 8.814100665

Thus the additional shielding created by the second electron is (8.814100665−8.14917098)=0.664929685, different from but of the same order of magnitude as the value of 0.5 that the simple theory of shielding by electrons in the same shell suggests.

(To be continued.)


HOME PAGE OF applet-magic
HOME PAGE OF Thayer Watkins