��<�!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<�HEAD>
<�TITLE>
The Quantum Theory of the Ground State Energies of Helium-Like Atoms
<�/TITLE>
<�SCRIPT language=javascript src=""><�/SCRIPT>
<�STYLE>BODY {
BACKGROUND: #aaffdd; MARGIN-LEFT: 0.2in; COLOR: #000000; MARGIN-RIGHT: 0.2in
}
H2 {
FONT-SIZE: 18pt; COLOR: #ff0000; TEXT-ALIGN: center
}
H4 {margin-left:2in; margin-right:2in; text-align:center;
font-size:20pt; color:#000000; background:#FFFF00; padding:20px; border-style:outset;
border-color:#FF0000; border-width:1px;}
LI {
BORDER-RIGHT: white 5px outset; PADDING-RIGHT: 20px; BORDER-TOP: white 5px outset;
PADDING-LEFT: 20px; FONT-SIZE: 18pt; BACKGROUND: #ddffff; PADDING-BOTTOM: 20px;
BORDER-LEFT: white 5px outset; TEXT-INDENT: 0.2in; LINE-HEIGHT: 1.2em;
PADDING-TOP: 20px; BORDER-BOTTOM: white 5px outset; text-weight: 400
}
UL {
BORDER-TOP-WIDTH: 20px; PADDING-RIGHT: 20px; PADDING-LEFT: 20px;
BORDER-LEFT-WIDTH: 20px; BORDER-LEFT-COLOR: black; BACKGROUND: #aaffff;
BORDER-BOTTOM-WIDTH: 20px; BORDER-BOTTOM-COLOR: black; PADDING-BOTTOM: 20px;
BORDER-TOP-COLOR: black; PADDING-TOP: 20px; BORDER-RIGHT-WIDTH: 20px;
BORDER-RIGHT-COLOR: black; spacing: 20px
}
TH {
FONT-SIZE: 16pt
}
TD {
FONT-SIZE: 16pt; TEXT-ALIGN: LEFT; spacing: 20px
}
P {
FONT-SIZE: 22pt
}
BLOCKQUOTE {
FONT-SIZE: 24pt; COLOR: #ff00ff
}
<�/STYLE>
<�META content="MSHTML 6.00.2800.1601" name=GENERATOR><�/HEAD>
<�BODY vLink=#000000 link=#ff0000 bgColor=#9acd32>
<�CENTER>
<�TABLE cellPadding=15 bgColor=#0000aa border=9 frame=box>
<�TBODY>
<�TR>
<�TH><�FONT color=#ffff00 size=5>San José State University<�/FONT> <�/B><�/TH><�/TR><�/TBODY><�/TABLE>
<�/CENTER><�p>
<�CENTER>
<�TABLE cellPadding=15 bgColor=#00ffff border=9 frame=box>
<�TBODY>
<�TR>
<�TH><�FONT color=#880000 size=5>applet-magic.com<�BR><�FONT color=#880000
size=4><�I>Thayer Watkins<�/I><�BR>Silicon Valley<�BR>& Tornado
Alley<�BR>USA<�/FONT><�/B><�/FONT><�/TH><�/TR><�/TBODY><�/TABLE><�/CENTER>
<�P><�CENTER><�TABLE BORDER=9 FRAME=box BGCOLOR=#0000aa CELLPADDING=10><�th>
<�CENTER><�FONT SIZE="5" COLOR=#FFFFFF><�b>
The Quantum Theory of the<�br>
Ground State Energies of <�br>
Helium-Like Atoms
<�/b><�/FONT><�/CENTER>
<�/th><�/TABLE> <�/CENTER>
<�b><�p>
Niels Bohr's model of the atom provided a wonderfully accurate explanation of the
<�A HREF="relabohr.htm">spectrum of hydrogen<�/A>, but when it was applied to the spectrum of helium
it failed. Werner Heisenberg developed a modification of Bohr's analysis but it involved
half-integral values for the quantum numbers. Bohr considered non-integral values of
quantum numbers nonsensical in terms of the logic of quantum theory. There was a crisis in
quantum theory that ultimately led to the creation in the 1920's by Heisenberg of a <�i>new quantum
theory<�/i> which became known as <�i>Matrix Mechanics<�/i>.
<�p>The issue of the whether quantum numbers have to be integers was resolved in 1927 by the work
of Erwin Schrödinger in which he established that the discreteness of quantum numbers
arises because they are eigenvalues of certain partial differential equations. Heisenberg disparaged
Schrödinger's <�i>Wave Mechanics<�/i>, but Schrödinger showed it gave the same predictions
of quantum phenomena as did Heisenberg's <�i>Matrix Mechanics<�/i>.
<�h2>The Model of Electrons in Atoms<�/h2>
<�p>It is easy to formulate the physics of a two-electron atom, and that will be done shortly, but it is wise to
first formulate the physics of a one electron atom. One electron atoms include not only the hydrogen
atom but also the singly ionized helium atom, the doubly ionized lithium atom, the triply ionized beryllium atom and so forth.
<�p>For purposes of simplicity it is assumed that the nuclei of atoms are so massive compared with
their electron(s) that the motion of the nuclei can be ignored.
<�h3>One Electron Atoms<�/h3>
<�p>The Hamiltonian for a hydrogen-like atom is
<�h4>
H = p²/(2m) − KZe²/r
<�/h4>
<�p>where p is the momentum of the electron, m is its mass, K is the constant for the electrostatic force,
Z is the number protons in the nucleus, e is the electrostatic charge unit and r is the distance from the
center of the nucleus to the center of the electron.
<�p>The time independent Schrödinger equation derived from the above Hamiltonian has eigenvalues
of
<�h4>
E<�sub>n<�/sub> = −mZ<�sup>2<�/sup>e<�sup>4<�/sup>/(2<�s>h<�/s>n²)
<�/h4>
<�p>where <�s>h<�/s> is Planck's constant divided by 2π and n is an integer, called the <�i>principal quantum number<�/i>.
The value of E<�sub>n<�/sub> is the energy of the state corresponding to n.
<�p>The lowest energy is E<�sub>1<�/sub> and the other energies of the other states can be expressed in terms of it; i.e.,
<�h4>
E<�sub>n<�/sub> = E<�sub>1<�/sub>/n²
<�/h4>
<�p>There is a more cogent simplification of the formula for E<�sub>n<�/sub>. Let me<�sup>4<�/sup>/(2<�s>h<�/s>n²) be denoted as γ. Then
<�h4>
E<�sub>n<�/sub> = −γZ²/n²
<�/h4>
<�p>The quantity γ is the absolute value of the ground state energy of the electron in a hydrogen atom (Z=1).
<�p> The spectrum is derived from the change in energy resulting from the electron falling from a state n<�sub>1<�/sub>
to a state n<�sub>2<�/sub>. Thus the energy of the emitted quantum is proportional to [1/n<�sub>2<�/sub>² − 1/n<�sub>1<�/sub>²].
<�p>The wave function for the state n can be found as a solution to its Schrödinger equation.
<�h3>Two Electron Atoms<�/h3>
<�p>For a two-electron atom the Hamiltonian is
<�h4>
H = p<�sub>1<�/sub>²/(2m) − KZe²/r<�sub>1<�/sub> + p<�sub>2<�/sub>²/(2m) − KZe²/r<�sub>2<�/sub>
+ Ke²/r<�sub>12<�/sub>
<�/h4>
<�p> where r<�sub>12<�/sub> is the distance between the two electrons.
<�p>The above Hamiltonian may be thought of as
<�h4>
H = H<�sub>1<�/sub> + H<�sub>2<�/sub> + Ke²/r<�sub>12<�/sub>
<�/h4>
<�p>with the last term considered as a perturbation to the solution for two independent single electron atoms.
Solutions for the ground (minimum) state of an electron in a hydrogen-like atom can be combined with a general state
for an electron. The general state of an electron is given by three quantum numbers, (n, <�i>l<�/i>, m<�sub><�i>l<�/i><�/sub>,
where n≥1, <�i>l<�/i><n and |m<�sub><�i>l<�/i>|≤<�i>l<�/i>. The ground state of an electron is where n=1, <�i>l<�/i>=0 and
m<�sub><�i>l<�/i><�/sub>=0.
<�p>Thus the ground state of a helium-like atom is the state in which both electrons are in their ground states; i.e., E<�sub>1,1<�/sub>.
<�p>The expected value of the energy involved in the interaction can be approximated by using the wave function
for the ground state of the corresponding hydrogen-like atom. This expected value is found to be (5/4)Zγ. Thus
<�h4>
E<�sub>1,1<�/sub> = −2Z²γ + (5/4)Zγ
<�/h4>
<�p>Several physicists have computed the ground state energies of helium-like
atoms. Here are two such comparisons.
<�CENTER>
<�TABLE cellPadding=20 bgColor=#00ff99 border=9 frame=box>
<�th colspan=4>Ground State Energies of Helium-like Atoms<�/th>
<�tr><�td>Atom or<�br>Ion<�/td><�td>Z<�/td><�td>Computed<�/td><�td>Experimental<�/td><�/tr>
<�tr><�td>He<�/td><�td>2<�/td><�td>−74.42<�/td><�td>−78.62<�/td><�/tr>
<�tr><�td>Li<�sup>+<�/sup><�/td><�td>3<�/td><�td>−192.80<�/td><�td>−197.14<�/td><�/tr>
<�tr><�td>Be<�sup>2+<�/sup><�/td><�td>4<�/td><�td>−365.31<�/td><�td>−369.96<�/td><�/tr>
<�tr><�td>B<�sup>3+<�/sup><�/td><�td>5<�/td><�td>−591.94<�/td><�td>−596.40<�/td><�/tr>
<�tr><�td>C<�sup>4+<�/sup><�/td><�td>6<�/td><�td>−72.69<�/td><�td>−876.20<�/td><�/tr>
<�tr><�td><�/td><�td><�/td><�td><�/td><�td><�/td><�/tr>
<�/table>
<�caption>L. Pauling and E.B. Wilson, <�i>Introduction to Quantum Mechanics,<�/i> p. 165<�/center>
<�p>
<�HR>
<�p>
<�CENTER>
<�TABLE cellPadding=20 bgColor=#ffff00 border=9 frame=box>
<�th colspan=4>Ground State Energies of Helium-like Atoms<�/th>
<�tr><�td>Atom or<�br>Ion<�/td><�td>Z<�/td><�td>Computed<�br>(Rydbergs)<�/td><�td>Experimental<�br>(Rydbergs)<�/td><�/tr>
<�tr><�td>He<�/td><�td>2<�/td><�td>5.50<�/td><�td>5.81<�/td><�/tr>
<�tr><�td>Li<�sup>+<�/sup><�/td><�td>3<�/td><�td>14.25<�/td><�td>14.56<�/td><�/tr>
<�tr><�td>Be<�sup>2+<�/sup><�/td><�td>4<�/td><�td>27.00<�/td><�td>27.31<�/td><�/tr>
<�tr><�td>B<�sup>3+<�/sup><�/td><�td>5<�/td><�td>43.75<�/td><�td>44.07<�/td><�/tr>
<�tr><�td>C<�sup>4+<�/sup><�/td><�td>6<�/td><�td>64.50<�/td><�td>64.83<�/td><�/tr>
<�tr><�td>N<�sup>5+<�/sup><�/td><�td>7<�/td><�td>89.25<�/td><�td>89.60<�/td><�/tr>
<�tr><�td>O<�sup>6+<�/sup><�/td><�td>8<�/td><�td>118.00<�/td><�td>118.39<�/td><�/tr>
<�tr><�td><�/td><�td><�/td><�td><�/td><�td><�/td><�/tr>
<�/table>
<�caption>J.C. Slater, <�i>Quantum Theory of Atomic Structure,<�/i>, p. 339-342
<�CENTER>
<�hr>
<�TABLE cellPadding=20 bgColor=#00ff00 border=9 frame=box>
<�TBODY>
<�TR>
<�TD>
<�CENTER><�A href="http://www.applet-magic.com/index.html">HOME PAGE OF
<�I>applet-magic<�/I> <�BR><�A
href="http://www.sjsu.edu/faculty/watkins/watkins.htm">HOME PAGE OF
<�I>Thayer Watkins<�/I><�/A>, <�/CENTER><�/TD><�/TR><�/TBODY><�/TABLE><�/CENTER>
<�/body>
<�/html>
<�!-- text below generated by server. PLEASE REMOVE --><�!-- Counter/Statistics data collection code --><�script language="JavaScript" src="http://l.yimg.com/d/lib/smb/js/hosting/cp/js_source/whv2_001.js"><�/script><�script language="javascript">geovisit();<�/script><�noscript><�img src="http://visit.webhosting.yahoo.com/visit.gif?us1481752989" alt="setstats" border="0" width="1" height="1"><�/noscript><�script type="text/javascript">(function (d, w) {var x = d.getElementsByTagName('SCRIPT')[0];var f = function () {var s = d.createElement('SCRIPT');s.type = 'text/javascript';s.async = true;s.src = "//np.lexity.com/embed/YW/2e0a836bd84a7d3d6e6099e241ea40b5?id=b8ba2a90c970";x.parentNode.insertBefore(s, x);};w.attachEvent ? w.attachEvent('onload',f) :w.addEventListener('load',f,false);}(document, window));<�/script>