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Chapter Learning Objectives

● Learn the physical meaning of partial derivatives of functions.

● Learn that there are different order of partial derivatives describing the 
rate of changes of functions representing real physical quantities.

● Learn the two commonly used technique for solving partial differential 
equations by  (1) Integral transform methods that include the Laplace 
transform for physical problems covering half-space, and the Fourier 
transform method for problems that cover the entire space; (2) the 
“separation of variable technique.”

● Learn the use of the separation of variable technique to solve partial 
differential equations relating to heat conduction in solids and vibration 
of solids in multidimensional systems.
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9.1 Introduction

A partial differential equation is an equation that involves partial derivatives.

Like ordinary differential equations, Partial differential equations for engineering 
analysis are derived by engineers based on the physical laws as stipulated in 
Chapter 7. 
Partial differential equations can be categorized as “Boundary-value problems” or 
“Initial-value problems”, or “Initial-boundary value problems”: 

(1) The Boundary-value problems are the ones that the complete solution of the partial 
differential equation is possible with specific boundary conditions. 

(2)  The Initial-value problems are those partial differential equations for which the  
complete solution of the equation is possible with specific information at one 
particular instant (i.e., time point) 

Solutions to most these problems require specified both boundary and initial 
conditions. 
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9.2 Partial Derivatives (p.285):

A partial derivative represents the rate of change of a function involving more than one variable (2 in 
minimum and 4 in maximum). Many physical phenomena need to be defined by more than one variable 
as in the following instance:

Example of partial derivatives: The ambient temperatures somewhere in California depend on where and 
where this temperature is counted. Therefore, the magnitude of the temperature needs to be expressed in 
mathematical form  of T(x,y,z,t), in which the variables x, y and z in the function T indicate the location at 
which the temperature is measured and the variable t indicates the time of the day or the month of the 
yaer at which the measurement is taken. The rate of change of the magnitude of the temperature, i.e., the 
derivatives of the function T(x,y,z,t) needs to be dealt with the change of EACH of all these 4 variables 
accounted with this function.  In other words, we may have all together 4 (not just one) such derivatives to 
be considered in the analysis. Each of these 4 derivative is called “partial derivative” of the function 
T(x,y,z,t) because each derivative as we will express mathematically can only represent “part” (not whole) 
of the derivative for this function that involves multi-variables.  

There are two kinds of independent variables in partial derivatives: 

(1) “Spatial” variables represented by (x,y,z) in a rectangular coordinate system, or (r,,z) in a cylindrical 
polar coordinate system, and 

(2) The “Temporal” variable represented by time, t.
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9.2 Partial Derivatives: - Cont’d

Mathematical expressions of partial derivatives (p.286)

x
xfxxf

dx
xdf

im
x 






)()()(
0



We have learned from Section 2.2.5.2 (p.33) that the derivative 
for function with only one variable, such as f(x) can be defined 
mathematically in the following expression, with physical 
meaning shown in Figure 9.1.: 
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For functions involving with more than one independent variable, e.g. x and t expressed in 
function f(x,t), we need to express the derivative of this function with BOTH of the independent 
variables x and t separately, as shown below: 

The partial derivative of function f(x,t) with respect to x only may be expressed in a similar 
way as we did with function f(x) in Equation (2.9), or in the following way:

(9.1)

We notice that  we treated the other  independent variable t as a “constant” in the above 
expression for the partial derivative of function f(x,t) with respect to variable x .

Likewise, the derivative of function f(x,t) with respect to the other variable t is expressed as:
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9.2 Partial Derivatives: - Cont’d

Mathematical expressions of higher orders of partial derivatives:
Higher order of partial derivatives can be expressed in a similar way as for ordinary functions, 
such as: 
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There exists another form of second order partial derivatives with cross differentiations with 
respect to its variables in the form:
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9.3 Solution Methods for Partial Differential Equations (PDEs) (p.287)

There are a number ways to solve PDEs analytically; Among these are: (1) using integral
transform methods by “transforming one variable to parametric domain after another in the
equations that involve partial derivatives with multi-variables. Fourier transform and Laplace 
transform methods are among these popular methods.  The recent available numerical 
methods such as the finite element method, as will present in Chapter 11 offers much
practical values in solving problems involving extremely complex geometry and prescribed 
physical conditions. The latter method appears having replaced much effort required in solving 
PDEs using classical methods.  With readily available digital computers and affordable 
commercial software such and ANSYS code, this method has been widely accepted 
by industry. The classical solution methods appears less in demand in engineering analysis 
as time evolves. 6



9.3 Solution Methods for Partial Differential Equations-Cont’d
9.3.1 The separation of variables method (p.287):

The essence of this method is to “separate” the independent variables, such as x, y, z, and t 
involved in the functions and partial derivatives appeared in the PDEs. 

We will illustrate the principle of this solution technique with a function F(x,y,t) in a partial differential 
equation. The process begins with an assumption of the original function F(x,y,t), to be a product of 
three functions, each involves only one of the three independent variables, as expressed in Equation 
(9.6), as shown below: 

F(x,y,t) = f1(x)f2(y)f3(t) (9.6)

where f1(x) is a function of variable x only
f2(y) is a function of variable y only, and 
f3(t) is a function of variable t only

Equation (9.6) has effectively separated the three independent variables in the original function 
F(x,y,t) into the product of three separate functions; each consists of only one of the three 
independent variables.

The 3 separate function f1, f2 and f3 in Equation (9.6) will be obtained by solving 3 individual ordinary 
differential equations involving “separation constants.” We may than use the methods for solving 
ordinary differential equations learned in Chapters 7 and 8 to solve these 3 ordinary differential 
equations. 

The partial differential equation that involve the function F(x,y,t) and its partial derivatives can thus 
be solved by equivalent ordinary differential equations via the separation relationship shown in  
Equation (9.6) . In general, PDEs with n independent variables can be separated into n ordinary 
differential equations with (n-1) separation constants. The number of required given  conditions 
for complete solutions of the separated ordinary differential equations is equal to the  orders of 
the separated ordinary differential equations.
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9.3 Solution Methods for Partial Differential Equations-Cont’d
9.3.2 Laplace transform method for solution of partial differential equations (p.288):
We have learned to use Laplace transform method to solve ordinary differential equations in Section 6.6, 
in which the only variable, say “x”, involved with the function in the differential equation y(x) must cover the
half space of (o<x<∞). Solution of the differential equation y(x) is obtained by converting this equation into 
an algebraic equation by Laplace transformation with the “transformed expression F(s) in which “s” is the 
Laplace transform parameter. The solution of the ordinary differential equation y(x) is obtained by inverting 
the F(s) in its resulting expression. We have also use the Laplace transform method to solve a partial
differential equation in Example 6.19 (p.194) after having learned how to transform partial derivatives in 
Section 6.7.

9.3.3 Fourier transform method for solution of partial differential equations (p.288):

       Fdxexfxf xi  



Fourier transform engineering analysis needs to satisfy the conditions that the variables that are to be  
transformed by Fourier transform should cover the entire domain of (-∞, ∞). Mathematically, it has the 
form:

(9.7)

The inverse Fourier transform is:      


  deFF xi



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2
11 (9.8)

The following Table 9.1 presents a few useful formula for Fourier transforms of a few selected functions. 
Functions for Fourier Transform f(x) After Fourier Transform F(ω)

(1) f(x-a) F(ω)e-iωa

(2)    δ(x)* 1
(3)    u(x)* (iω)-1

(4)

(5)   u(x)sinax

(6)   u(x)cosax

0  xe

*δ(x) = Delta function, or impulsive function and u(x) is the unit step function. Both these functions are defined in Section 2.4.2
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9.3 Solution Methods for Partial Differential Equations-Cont’d

Example 9.2
Solve the following partial differential equation using Fourier transform method.
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where the coefficient α is a constant. The equation satisfies the following specified condition:
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Solution

       dxetxTtxTtT xi 

 ,,,*

We will transform variable x in the function T(x,t) in Equation (9.11) using Fourier transform in Equation (9,7):

(a)
Apply the above integral to the left-hand-side of Equation (9.11) will yield:
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Equation (9.11) has the form after the transformation: 

   
dt

tdTtT ,*,* 22   (b)

Equation (b) is a first order ordinary differential equation involving the function T*(ω,t) and the method 
of obtaining the general solution of this equation is available in Chapter 7.

9.3.3 Fourier transform method for solution of partial differential equations:-Cont’d

At this point, we need to transform the specified condition in Equation (9.12) by the Fourier transform 
defined in Equation (a), or by the following expression:
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9.3 Solution Methods for Partial Differential Equations-Cont’d

Example 9.2- Cont’d

9.3.3 Fourier transform method for solution of partial differential equations:-Cont’d

We  will solve the first order ODE in Equation (b) with the solution of  T*(ω,t) in 
Equation (b) and obtain:
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The solution of the partial differential equation in Equation (9.11) with the specified 
condition in Equation (9.12) can thus be obtained by inverting the transform T*(ω,t) to T(x,t) 
using Equation (9.8) by the following expression:
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where g(ω) is available in Equation (c) to be the Fourier transformed specified 
condition of T(x,0) in Equation (9.12).
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9.4 Partial Differential Equations for Heat Conduction in Solids (p.291)

We have learned from Section 7.5 (p.217) that temperature variations in media is 
induced by heat transmissions. This variation of temperature in media (solids or 
fluids) is called temperature field. 

Heat transfer is a very important branch of mechanical and aerospace engineering 
analyses because many machines and devices in both these engineering disciplines 
are vulnerable to heat. According to statistics, over 60% of electronics devices in the 
US Airforce failed to functions due to excessive heating.  Excessive heat flow can also 
result in a high temperature fields in the structural media, which may result in serious 
thermal stresses in addition to significant deterioration of material strength and 
property changes, as presented in Section 7.5.

In this section, we will derive the partial differential equations for heat conduction in 
solids in  both rectangular and cylindrical polar coordinate systems, and solve these 
equations by using separations of variables technique. Although many of these 
problems can also be solved by advanced numerical techniques such as finite 
difference and finite element methods, the classic solutions as will be presented in 
this chapter, however, will offer engineers with solutions at anywhere in the solid 
structure, which the numerical methods cannot offer the same. These numerical 
methods, however, are often used for situations that involve complicated geometry, 
loading and boundary conditions.

9.4.1 Heat conduction in engineering analysis
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9.4.2 Derivation of partial differential equations for heat conduction analysis

Heat conduction equation is used to determine the temperature distributions induced by
heat conduction in solids, either by heat generation by the solids or by heat from external 
sources.

This equation will be derived from the law of conservation of energy, in particular, the first 
law of thermodynamics.

By referring to Figure 9.3 , a solid with a volume is 
subjected to heat flow in the form of heat flux q(r,t) from 
external sources to a small element (in the small open 
circle) in the figure. 

The heat leaving the element is q(r+∆r,t) with r designating 
the spatial variables of (x,y,z) in a rectangular coordinate 
system or (r,θ,z) in a cylindrical polar coordinate system. 
Since heat is a form of energy, we may use the law of 
conservation of energy in the following block diagrams 

to derive the mathematical expression for the case:
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9.4.2 Derivation of partial differential equations for heat conduction analysis – Cont’d

We may use the following mathematical expressions to represent
the physical quantities in the solid shown in Figure 9.3.

From the block diagram of energy conservation and the above mathematical representations of 
physical quantities in the block diagram, we may establish the following partial differential equation 
for the temperature variations in the entire solid to be:

      tQtTk
t

tTc ,,, rrr



 (9.13)

where k = thermal conductivity of the solid material, Q(r,t)= heat generation by the material
(such as Ohm heating of Q=iR2 with i being the electric current in Ampere, and R is the electric 
resistance of the material in Ohms.
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9.4.3 Heat conduction equation in rectangular coordinate system

The general heat conduction equation in Equation (9.13) will take the following form 
with T(r,t) = T(x,y,z,t):
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in which kx, ky and kz are the thermal conductivities of the solid along the x-, y- and z-
coordinates respectively.

9.4.4 Heat conduction equation in cylindrical polar coordinate system:
Heat conduction equation in this coordinate system is obtained by expanding Equation (9.8) as follows 
with T(r,t) = T(r,θ,z,t):
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where kr,kθ and kz are thermal conductivities of the material along the r-, θ- and z-coordinate 
respectively.
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9.4.5 General heat conduction equation (p.293):

Thermal conductivities kx, ky and kz in Equation (9.14a) and kr, kθ and kz in Equation (9.14b) are used for 
heat conduction analysis of solids with their thermophysical properties varying in different directions, such 
as for fiber filament composites. For most engineering analyses, such variation of thermophysical 
properties do not exist. Consequently a generalize heat conduction equation may be expressed as 
follows

     
t

tT
k

tQtT





,1,,2 rrr


(9.15)

where k = thermal conductivity of the material and Q(r,t) is the heat generated by the material 
per unit volume and time.

The symbol α in Equation (9.15) is “thermal diffusivity” of the material with its value equals 

to: c
k


  , it is often used as a measure on how “fast” heat can flow by conduction 
in solids.

9.4.6 Initial conditions:
Complete solution of heat conduction equation in Equation (9.15) involves determining a number  of 
arbitrary constants according to  specific initial and boundary conditions.
These conditions are necessary to translate the real physical conditions into mathematical expressions. 
Initial conditions are required only when dealing with transient heat transfer problems in which 
temperature field in a solid changes with elapsing time. The common initial condition in a solid can 
be expressed mathematically as:      rrr 00

0,, TTtT
t


 (9.16)

where the temperature field T0(r) is a specified function of the spatial coordinates r only

In many practical applications, the initial temperature distribution T0(r) in Equation (9.16) can be 
assigned with a constant value such as room temperature at 20oC for a uniform temperature 
condition in the solid. 15



9.4.6 Boundary conditions:
Specific boundary conditions are required in obtaining complete solutions in heat 
transfer analyses using the general heat conduction equation in (9.15). Four types of 
boundary conditions are available for this purposes.as will be presented below.

1) Prescribed surface temperature, Ts(t):
This type of boundary condition is used to have the temperature at the surface of the solid 
structure measured by either attaching thermocouples to the structure surface or by some 
non-contact methods such as infrared thermal imaging scanning camera. The mathematical 
expression for this case takes the form:

   tTtT s
s


rr
r, (9.17a)

where rs is the coordinates of the boundary surface where temperature are specified to be Ts(t)

2) Prescribed heat flux boundary condition, qs(t):
Many structures have their surfaces exposed to a heat source or a heat sink, in such situations,
heat is being supplied to or removed from the solids through its outside surface. The 
mathematical translation of the heat flux to or from a solid surface can be readily carried out by 
using the Fourier law of heat conduction defined in Equation (7.25). The mathematical formulation 
of the heat flux across a solid boundary surface can be expressed as:
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where k is the thermal conductivity of the solid material. The symbol 
in

 is the differentiation along 
the outward-drawn normal to the boundary surface Si. We may express Equation (9.17b) for the 
boundaries that are impermeable to heat flow, or a boundary that is thermally insulated as:
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9.4.6 Boundary conditions – Cont’d:
3) Convective boundary conditions:

This type of boundary condition applies when the solid
structure is either in contact with a fluid, or is submerged
in fluids, as often happen in reality.

Let us derive the mathematical expressions of the boundary conditions
by referring to the sketch in Figure 9.5.

We first recognize that there is a physical “barrier” that retards free heat
flow between the solid surface and its contacted fluid.  This barrier is
often recognized as the “boundary layer that can be characterized by a “film 
resistance that is equal to “1/h” with h being the film coefficient as defined in
Equation (7.29) in Section 7.5.5.  Physically it means that the temperature of
the solid surface Ts ≠ the temperature of the surrounding bulk fluid Tf.

The following two (2) mathematical expressions are derived to represent the above physical phenomenon:

    fTtTh
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,,
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rr

rr

s

From the fact that no heat is being stored at the interface of the solid and fluid, which leads to the following 
Equality:

Heat flow in solid = Heat flow in fluid or in the form:
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The above equation involves heat flows in solids by conduction and heat flows in fluids by convection. 
It is often referred to be the “mixed boundary conditions.”  This expression of boundary condition 
actually could be used for problems involving prescribed surface temperatures in Equation (9.17a) with  
h→∞, We may also prove that letting h = 0 in Equation (9.17d) will lead to a thermally insulated 
boundary condition with qs = 0 in Equation (9.17b). 17
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Example 9.3 (p.295)

Show the appropriate boundary conditions of a long thick 
wall pipe containing hot steam flow inside the pipe at a 
bulk temperature Ts with heat transfer coefficient hs. 

The outside wall of the pipe is in contact with cold air at a 
temperature of Ta and with a heat transfer coefficient ha, 
as illustrated in Figure 9.6.

Solution
A common but logical hypothesize made in this type of engineering analysis is  that heat 
will flow is primarily along the positive radial direction (r) in a long pipe such as in this 
example because of the greater temperature gradient cross the pipe wall than that along 
the length. So, the radial direction is the principal direction of heat flow.  Consequently, we 
will account for two boundary surfaces in this analysis, i.e., at the inner surface with r = a 
and the outside surface at r=b.

Since heat transfer  coefficients of both the steam inside the pipe (hs) and the heat transfer 
coefficient of the air outside the pipe (ha) are given, we may use Equation (9.17d) to establish the 
convective boundary conditions at both sides of the pipe wall as follows:

(a) At inner boundary with r = a:     s
s

ar

s

ar

T
k
hrT

k
h

dr
rdTk 



(b) At the outside boundary with r = b:     a
a

br
a

br

T
k
hrT

k
h

dr
rdTk 




in which k = thermal conductivity of the pipe material
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Example 9.4 (p.296)

Find the temperature distribution in a long thick wall pipe 
with inner and outside radii a and b respectively by using 
the three types of boundary conditions in Equations 
(9.17a,b,d). 
Conditions for establishing the mathematical expressions 
for these boundary conditions with hot steam inside the 
pipe and the cool surrounding air outside the pipe are 
indicated in Figure 9.7. 

Solution
We adopt the same principal as described in the last example that the shorter heat flow path 
along the radial direction of the pipe enables us to assume the principal temperature variation
in the pipe wall is with the radius variable (r). Consequently, we may assume that the 
temperature function that we desire in this analysis is T(r) only.  
Thus, by select the relevant terms in the PDE in (9.14b), we will have the relevant differential 
equation of the form:

(a)

Solution of the differential equation in (a) may be obtained by either using Equation (8.6), or by 
re-arranging the terms that fit the following form of: 

  0





dr
rdTr

dr
d

from which we get the solution T(r) by integrating Equation (b) twice with respect to variable r,
leading to  the form:

(b)
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    21 crncrT   (c)
where c1 and c2 are two arbitrary constants 19
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Example 9.4-Cont’d

We have derived the general solution of the temperature
across the pipe wall to be:

    21 crncrT  
(c)

We will determine the two arbitrary constants
c1 and c2 using the 3 different sets of boundary
conditions presented in Section 9.4.6 as follows:

(A) With prescribed boundary conditions in Equation (9.17a):
With the given conditions of:Ta to be the temperature at the inner surface with T(a) = Ta, and T(b) = 
Tb at the outside surface of the pipe, we will determine the two constants in Equation (c) to be:
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 21 which leads to the following complete solution:
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TTTrT ba
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(B) With prescribed heat flux qa across the inner surface and Tb at the outside surface:
 

k
q

dr
rdT a

ar




(e)at inner surface:

at outside surface:     bbr
TbTrT 


(f)

We may determine the constants c1 and c2 in Equation (c) to be:  bn
k

aqTcand
k

aqc a
b

a  21

which leads to the comolete solution of Equation (a) to be:
  






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k
aqTrT a

b  (g)
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Example 9.4-Cont’d

(c) With mixed boundary conditions 
in Equation (9.17d):

The 2 appropriate boundary conditions are:

at inner pipe surface:     s
s

ar
s

ar

T
k
hrT

k
h

dr
rdT
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



(h)
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T
k
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

at outside pipe surface: (j)

Substitute (h) and (j) into Equation (c), we will get:
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The temperature distribution in the pipe wall T(r) may be obtained by substituting the 
constants c1 and c2 in the above expressions into the solution in Equation (c).
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9.5 Solution of Partial Differential Equations for Transient 
Heat Conduction Analysis (p.298)

The partial differential equation presented below and also in in Equation (9.15) is 
valid for the general case of heat conduction in solids includes transient cases in 
which the induced temperature field T(r,t) varies with time t. 

     
t

tT
k

tQtT





,1,,2 rrr


(9.15)

where r = the position vector  and t = time. Q(r,t)= the heat generation by the material
in unit volume and time, k, α = thermal conductivity and thermal diffusivity of the material 
respectively, with k to be a measure of how well material can conduct heat and the latter 
α is a measure of how fast the material can conduct heat.

The position vector r may be in rectangular coordinates: (x,y,z) or in cylindrical polar 
coordinate system (r,θ,z). 

The complexity in transient heat conduction analysis is that not only we need to specify the 
position (r) where the temperature of the solid is accounted for, but we will also need to 
specify the time t at which the temperature of the solid occurs. We thus need to specify both 
theboundary and initial conditions such as described in Section 9.4.6 for complete solution of 
the temperature filed in the solid. 

In this section, we will demonstrate how the separation of variables technique described 
in Section 9.3 will be used to solve this type of problems in both rectangular and 
cylindrical polar coordinate systems. 22



9.5.1 Transient heat conduction analysis in rectangular coordinate system (p.298)
The case that we will present here involves a large flat slab 
made of a material with thermal conductivity k. 
The slab has a thickness L as illustrated in Figure 9.8. It 
has an initial temperature distribution that can be described 
by a specified function of f(x), and the temperatures of both 
its faces are maintained at temperature Tf at time t > 0. 

We need to determine the temperature variation in the slab 
with time t, i.e. T(x,t) in the figure after the temperature of 
both faces of the slab are maintained at Tf. 

We may also recognize a fact that the geometry of a large flat slab is a good approximation 
for the situation of a circular cylinder with large diameter with a large ratio of D/d in which D 
is the nominal diameter of the hollow cylinder and d is the thickness of the wall of the 
hollow cylinders. The solution obtained from this analysis of flat slab may thus be used for 
large hollow cylinders such as pressure vessels of large diameters such as for nuclear 
reactor vessels in nuclear power plants.

The physical situation of this example  is that the flat slab has an initial temperature
variation through its thickness fits a function T(x.0) = f(x) –a given temperature dis-
tribution. Both its surfaces are maintained at a constant temperature Tf at time t >0+

for t > 0. One may imagine that the temperature in the slab will continuously varying 
with time t, until the temperature in the entire slab reaches a uniform temperature Tf. 
The purpose of our subsequent analysis, however, is to find the transient temperature 
T(x,t) in the slab before it reaches the ultimate uniform temperature of Tf.
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   
t

txT
x

txT






 ,1,

2

2



The governing differential equation for the aforementioned physical situation may be 
deduced from heat conduction equations in  Equations (9.14a) and (9.15) with the 
thermal conductivity of the slab material kx = ky = kz=k for being an isotropic material. 
The term Q(x,y,z,t) in Equation (9.14a) and Q(r,t) in Equation (9.15) are deleted 
because the slab does not generate heat by itself. Consequently, the equation that 
matches the the present physical situation becomes:

9.5.1 Transient heat conduction analysis in rectangular coordinate system –Cont’d (p.299)

(9.18)

With the initial condition (IC): 
     xfxTtxT

t



0,,

0

(9.19a)

and the following boundary conditions (BC):
    0,0,

0



tTtTtxT fx

    0,, 


tTtLTtxT fLx

(9.19b)

(9.19c)

We may solve the partial differential equation in Equation (9.18) by using Laplace transform 
method described in Section 6.5.2 (p. 180) or 9.3 (p.287) by transforming the variable “t” to 
parametric domain , or use the separation of variables technique  as described in Section 9.3.1. 
However, we may circumvent our effort in the solution of Equation (9.18) by using the 
separation of variables method  with converting the non-homogeneous BCs in Equation 
(9.19b,c) to homogeneous BCs by the following substitution of u(x,t) to T(x,t):

u(x,t) = T(x,t) ‐ Tf (9.20)
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9.5.1 Transient heat conduction analysis in rectangular coordinate system –Cont’d

      0,,,
00


 fffxx

TTTtxTtoutxu

      0,,, 
 fffLxLx

TTTtxTtLutxu

(b)

(c)

The above relation in Equation (9.20) will result in the revised PDEs in Equation (9.18)
into the following form:

   
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txu
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txu






 ,1,

2

2


(9.21)

with the revised initial condition:
      ft

Txfxutxu 


0,,
0 (a)

and the 2 converted boundary conditions:

We are now ready to solve the equation in (9.21) and the associate initial and boundary 
conditions in Equations (a,b,c) using the separation of variables method as presented below:
We will proceed by letting:

u(x,t) = X(x)τ(t) (9.22)

Substituting the relationship in Equation (9.22) into Equation (9.21) will lead to the following 
expressions:

leads to: and this equality

in which the partialcan now be expressed in ordinary derivatives.

25
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9.5.1 Transient heat conduction analysis in rectangular coordinate system –Cont’d

The expression that we just derived, as shown below

can be expressed in a slight different form after re-arranging the terms to another equality:

The above expression shows a very interesting but unique feature: 

The LHS of the above expression involves the variable x only =
The RHS of the same expression involves the variable t only

The ONLY condition such an equality can exist is to have both sides of the expression
to equal a CONSTANT!!  (we may prove that the constant must be a NEGATIVE constant).

Consequently, we may have the following valid equality:

 
 

 
 

dt
td

tdx
xXd

xX



111

2

2



(9.23)

where β is the “separation  constant” and it can be either positive or negative constant. 

    02
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 xX
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xXd 

    02  t
dt

td 

(9.24)

(9.25)

Equation (9.23) results in the following 2 separate ordinary differential equations:
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9.5.1 Transient heat conduction analysis in rectangular coordinate system –Cont’d

The solution X(x) and τ(t) in respective Equations (9.24) and (9.25) requires the specific 
conditions for both these equations. Equation (9.22) is used in conjunction with those 
given initial and boundary conditions in Equations (a,b,c) will  get us the following 
required equivalent conditions: 

    02
2

2

 xX
dx

xXd 

    02  t
dt

td 

(9.24)

(9.25)

X(0)= 0 and X(L) = 0 (e1, e2)
for Equation (9.24).
Solution X(x) in Equation (9.24) is readily found from Section 8.2 with the form:

X(x) = A cosβx + B sinβx (f)
The arbitrary constant A in Equation (f) can be determined by Equation (e1) to be zero, which
leaves Bsinβx=0. the use of the given condition in Equation (e2) leads to BsinβL=0, which
leads to either B=0 or sinβL=0; Since B≠0 (to avoid a non-trivial solution of X(x)=0), the only 
choice for us is to let sinβL = 0 (9.26)
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dt
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tdx
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We will quickly realize that there are multiple values of the separation constant β that satisfy 
Equation (9.26). These are: β = nπ, with n = 1,2,3,……….Alternatively, we may express the 
separation constant β in the following  form: ......)..........,3,2,1(  n

L
n

n
 (9.27)
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n
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

Consequently, the function X(x) 
in Equation (9.24) takes the form:

(9.28)
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9.5.1 Transient heat conduction analysis in rectangular coordinate system –Cont’d

    02  t
dt

td  (9.25)

Solution of this first order differential equation is:
  t

n
neCt
2  (9.29)

where Cn with n = 1, 2, 3,……are multi-valued integration constants corresponding to the 
multivalued βn in the solution.
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 (9.30)

The multi-valued constant coefficients bn=CnBn in Equation (9.30) may be determined 
by the last available initial condition in Equation (a) in which u(x,o) = f(x)-Tf. 
Consequently, we have: 

   
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xnbTxfxu
n

nf
sin0,

1





 (9.31)

where f(x) and Tf are the given initial temperature distribution in the slab and the contacting bulk 
fluid temperature respectively.
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9.5.1 Transient heat conduction analysis in rectangular coordinate system –Cont’d

Determination of the multi-valued constant coefficients bn in Equation (9.30) on P.302: 

We will use the “orthogonality property of integrals of trigonometry functions” for the above task.
The two applicable properties are presented below:
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Following steps are taken in determining the coefficient bn with n = 1,2,3,…., in Equation (9.31):

Step 1: Multiply both side of Equation (9.26) with function
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Step 2:  Integrate both sides of Equation (g) with integration limits of (0,L):
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Step 3: Make use of the orthogonality of the harmonious functions like sine and cosine with the 
relationships in Equation (9.32):    
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We thus have the solution of Equation (9.21) to be:     
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The solution of T(x,t) in Equation (9.18) for the temperature distribution in the slab can thus be 
obtained by the relationship expressed in Equation (9.20) to take the form:
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(9.34)

It will not be hard for us to envisage that T(x,∞)→Tf in Equation (9.34) – a solution in reality.
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9.5.2 Transient heat conduction analysis in cylindrical polar coordinate system (p.303)
There are many mechanical engineering equipment having 
geometry that can be better defined by cylindrical polar 
coordinates (r,θ,z) such as illustrated in the figure to the right:

Cylinders, pipes, wheels, disks, etc. all fit to this kind of geometry such 
asshown in Figure 9.9..

It is desirable to know how to handle heat conduction in solids of these 
geometry. 

We will present the case of solving heat conduction problem using 
the separation variable technique in a solid cylinder with radius a 
as shown in Figure 9.9. 

The cylinder is initially with a given temperature distribution of f(r). 
It is submerged in a fluid with bulk fluid temperature Tf.at time t+0+. 

The situation in real application is like having a hot round solid cylinder initially with a 
temperature variation from hot center cooling down towards its circumference surface 
described by function f(r). It is a classical case of “quenching” operation in a metal forming operation.

The surrounding contacting liquid at a cooler temperature Tf is vigorously agitated so that the heat
transfer coefficient h of the fluid at the contact surface may be treated as “∞” in Equation (9.17d) on 
p, 295, leading to the boundary temperature of the solid cylinder to be Tf, as stated in the problem. The 
temperature field in the solid cylinder may be represented by the function T(r,t), in which r = radial 
coordinate and t is the time into the heat conduction in the solid.
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9.5.2 Transient heat conduction analysis in cylindrical polar coordinate system – Cont’d (p.303)

The applicable PDE for the current application may be deduced from Equation (9.14b) by dropping 
the second and other terms in the right-hand-side of that equation, resulting in:

     
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
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
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 (9.35)

c
k


 where is the thermal diffusivity of the cylinder material with ρ and c being the mass density 
and specific heat of the cylinder material respectively. 

We will have the given initial condition:      rfrTtrT
t




0,,
0

(a)

and boundary conditions:     0,, 


tTtaTtrT far
(b1)

The other  “inexplicit” boundary condition for solid cylinders or disks is that the temperature at 
the center of the cylinder or disk must be a finite value at all times. Conversely this implicit 
boundary condition for the current case meant to be:

      valuefinitetTortTtrT
r
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,0,0,
0

(b2)
with the PDE in (9.35) and the initial and boundary conditions specified in Equations (a), (b1)
and (b2) as specified above, we may proceed to solve for the transient temperature distribution 
T(r,t) in Equation (9.35) by using the separation of variables technique similar to what we did 
in the proceeding Section 9.5.1. 

Again, for the same reason as in the previous case, we will first convert the non-homogeneous 
boundary condition in Equation (b1) to the form of homogeneous condition by letting: 

u(r.t) = T(r,t) -Tf
(c)

Accordingly, Equation (9.35) and the original initial and boundary conditions will have the forms:
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(e)
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We thus have the PDE:      
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with conditions:       00,,
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Upon substituting the above relation in Equation (9.37) into Equation (9.36) will result in the following
Expressions::
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Equation (f) offers the legitimacy of converting the partial derivatives of R(r) and τ(t) to ordinary 
derivatives as shown below:
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We notice that the LHS of Equation (g) involves variable t only whereas the RHS of the same expression
involve the other variable r only. The only way that such equality can exist is for both sides in Equation (g) 
to be equal to a same negative separation constant β. We thus have the following relationship: 
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9.5.2 Transient heat conduction analysis in cylindrical polar coordinate system – Cont’d

Solution of partial differential equation:      
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with conditions:       00,,
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We can thus split Equation (9.38) into the following two separate ordinary differential equations:

(9.39)

(9.40)

The solution of Equation (9.39) is identical to Equation (9.29) in the form:

  t
n

bect
2  (h)

where the constant coefficients cn with n = 1, 2, 3,….. is a multivalued integration constants.

We notice that Equation (9.40) is  special case of the Bessel equation in Equation (2.27) on p.56 with 
order n = 0. Consequently, the solution of Equation (9.40) can be expressed by the Bessel functions given 
in Equation (2.28) on the same page with n = 0 in the following form:

R(r) = A J0(βr) + B Y0(βr) (9.41)

where the constant coefficients A and B will be determined by the boundary conditions stipulated in 
Equations (d) and (e).
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9.5.2 Transient heat conduction analysis in cylindrical polar coordinate system – Cont’d

Solution of partial differential equation:      
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with conditions:       00,,
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We have solve the differential equation in Equation (9.40) to be the expression given in Equation (9.41): 

R(r) = A J0(βr) + B Y0(βr)
(9.41)

where A and B are two arbitrary constants  to be determined by the two boundary conditions applicable 
in this case are: R(0) for u(0,t) and thus T(0,t). For the condition  R(0), we will have, from Equation (h) 
in the form: R(0)=AJ0(0)+BYo(0), we realize that J0(0) = 1.0 from Figure 2.45 (p.56), but Yo(0)→-∞ as 
indicated in the same figure. The latter indicates that R(0), therefore T(0) →-∞ (an unbounded temperature 
at the center of the solid cylinder, which is obviously not a realistic solution. The only way that we may avoid 
this unrealistic situation is to let the constant B = 0.
Consequently, we have the solution in Equation (h) to take the form: R(r) = A J0(βr)

The boundary condition in Equation (e) will lead to the expression:  R(a) =A J0(βa) = 0, which requires either:
A = 0, or J0(βa) = 0. Since the coefficient B in Equation (h) is already set to be zero (0), to let A=0 will mean 
the function R(r)=0, an unacceptable trivial solution for the temperature T(r,t). We are thus left with the only 
option to have:

J0(βa) = 0 (9.42)

Equation (9.42) offers the values of the separation constant β in Equation (9.38) because J0(x) = 0 is an 
equation that has multiple roots (see Figure 2.45(a) on p.56 like sin(βL) = 0 in Equation (9.26) on p.301. 
The roots of the equation J0(βa) = 0 in Equation (9.42) may be found either from the Figure 2.45(a) on 
p.56, or from math handbooks. 34
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9.5.2 Transient heat conduction analysis in cylindrical polar coordinate system – Cont’d

Solution of partial differential equation:      
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with conditions:       00,,
0
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R(r) = A J0(βr)   t
n

bect
2 

Since both A and Cn are constants, and the latter Cn is a multivalued constants with n = 1,2,3,…., 
we may express the complete solution u(r,t) in the form:

   rJebtru n
t

n
n

n 
0

1

2

, 



 (9.44)

where the multi-valued constant bn may be determined by the conditions in Equations (d) and (e).

We thus have the following expression after apply the initial condition in Equation (d):

            .......0. 3032021010
1

 




rJbrJbrJbrJbTrfru n
n

nf  (9.45)

where f(r)-Tf in Equation (d) are given conditions with the PDE in Equation (9.35), and bn in Equation (9,45) 
may be determined by following a similar procedure as outlined in Section 9.5.1 using the “orthogonality 
properties” of trigonometric functions in Equation (9.32) on p.302. However, we will use the Fourier-Bessel 
relation  in determining the coefficients bn in Equation (9.45) in the present case.
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9.5.2 Transient heat conduction analysis in cylindrical polar coordinate system – Cont’d

Solution of partial differential equation:      
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with conditions:       00,,
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The Fourier-Bessel relation has the form (p.307):
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We will multiply both sides of Equation (9.45) by the following series of Bessel functions:
      ...........302010  rrJrrJrrJ  as shown in the following expression:

and the expansion of both sides of the above expression will result in:
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Integrating both sides of Equation (k) with respect to variable r will result in:
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The Fourier-Bessel relation enables us to eliminate the 2nd part of the Bessel functions, and result in:
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 We may thus obtain the multi-valued coefficient bn to be: (9.46)
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9.5.2 Transient heat conduction analysis in cylindrical polar coordinate system – End

Solution of partial differential equation:      
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The solution of u(r,t) in Equation (9.36) thus has the form:
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where the coefficients bn are obtained fro the integral in Equation (9.46):
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(9.46)

We may obtain the transient temperature distribution in the cylinder T(r,t) by the 
relation derived from Equation (c) as: T(r,t) = Ti+u(r,t).

We thus have the solution of the temperature distribution in the cylinder to be:

   rJebTtrT n
t

n
nf

n 
0

1

2

, 



 (9.47)

where the multi-valued coefficients are computed from Equation (9.46)

We notice the appearances of Bessel functions in the solution of this problem. It is normal
to see such appearances of Bessel functions in solid geometry involving circular geometry,
such as cylinders, disks, and even solids of spherical geometry.
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9.6 Solution of Partial Differential Equations for Steady-State Heat Conduction Analysis
Often, we are required to find the temperature distributions in solid machine structures with 
stable heat flow patterns, which makes the temperature distributions in the solids 
independent of time variation, i.e., the steady state heat conduction. Following are 
examples on heat flow in the machines in steady-state conditions:

Tubes with fins
IC chip with heat spreader:

Jet engine-gas turbine

Tubular heat exchanger:
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Mathematical representation of multi-dimensional heat conduction in solids is available by 
using the partial differential equation without the term related to time variable t. The PDE in 
Equation (9.15) on p.293 is reduced to the following form

9.6 Partial Differential Equations for Steady-State Heat Conduction Analysis (p.308)

    02 
k

QT rr (9.48)

where the position vector r represents (x,y,z) in rectangular coordinate system, or (r,θ,z) 
in cylindrical polar coordinate system. 

Equation (9.48) is further reduced to the “Laplace equations” in the following form if no 
heat is generated by the solid:

  02  rT (9.49)

We will demonstrate the solution of PDEs for steady-state heat conductions in 
multi-dimensional solid structure components using separation variables technique 
in both rectangular and cylindrical polar coordinate systems in the subsequent 
presentations.
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9.6.1 Steady-State Heat Conduction Analysis in Rectangular Coordinate System (p.308)
We will demonstrate the use of the Laplace equation in 
Equation (9.49) for the temperature distribution in a square 
plate with temperature in its three edges maintained at 
constant temperatures at 0oC and the other edge at 100oC, 
as illustrated in Figure 9.10.

Solid plate structure components are common in the heat 
spreaders in internal combustion engines,
tubular heat exchanges, and heat spreaders for
microchips, as illustrated in the last slide.

In the present case, heat flows from the heat source at the 
top face with higher temperature towards the heat sinks in 
the other edges at lower temperatures. There is no heat 
flows across the thickness of the plate with an assumption 
that both the plan faces of the plate is thermally insulated.
The induced temperature field thus covers over the plane area of the plate, and the temperature 
distribution in the plane of the plate is represented by the function T(x,y).
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2

2


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
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


y
yxT

x
yxT

We have the applicable PDE 
expressed in Equation (9.50), 
and specified boundary 
conditions in Equations (a1),
(a2), (a3) and (a4).

10001000  yandx
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9.6.1 Steady-State Heat Conduction Analysis in Rectangular Coordinate System – Cont’d
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Solution of Partial Differential Equation using Separation of Variables Method (p.309):

Boundary conditions:

There are two variables x and y in the solution of temperature function T(x,y), we will thus let:
T(x,y) = X(x) Y(y) (b)

in which function X(x) involves only variable x, and function Y(y) involves variable y only.

Substitute Equation (b) into Equation (9.50), and after re-arranging terms, yields the following 
expression:

 
 

 
 
2

2

2

2 11
dy

yYd
yYdx

xXd
xX



We will use the same argument as we did in Sections 9.5.1 and 9.5.2 that the only way the above 
equality can exist is to have both sides of the equality to be equal to a negative separation constant. 

We will thus have the following equality:

 
 

 
  2
2

2

2

2 11 
dy

yYd
yYdx

xXd
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(c)
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9.6.1 Steady-State Heat Conduction Analysis in Rectangular Coordinate System – Cont’d
Solution of PDE in Equation (9.50) using Separation of Variables Method-Cont’d:
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2
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


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y
yxT

x
yxT

Equation (c) leads to the split of the PDE in Equation (9.50) into two ordinary differential equations 
(ODEs) after the separation of the variables x and y as shown below:

    02
2

2

 xX
dx

xXd 

    02
2

2

 yY
dy

yYd 

(d)

(e)

X(0) = 0 
X(100) = 0

(f1)

(f2)

Y(0) = 0 (f3)

The original PDE in 
Equation (9.50):

Both Equations (d) and (e) are homogeneous 2nd order differential equations with the solutions methods
available in Section 8.2. We will shown the solutions of these two equations in the following forms:

Solution of Equation (d):   xBxAxX  sincos  (g)

Solution of Equation (e): Y(y) = C coshβy + D sinhβy (k)

We may obtain the expression for the multi-valued separation constant β to be the solution 
of the characteristic equation of sin(100β) = 0, and the constant coefficient A = 0 upon substituting
The boundary conditions in Equations (f1) and (f2) into Equation (g). We have thus obtained 
the multi-valued separation constants βn = (nπ)/L with L=100 and  n = 1,2,3,….,n from the roots of 
the equation sin(100β) = 0. We can thus express the function as:

X(x) = Bnsinβnx (j)

in which Bn with n = 1,2,3,….,n are the multi-valued constant coefficients to be determined later.
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9.6.1 Steady-State Heat Conduction Analysis in Rectangular Coordinate System – Cont’d
Solution of Partial Differential Equation (9.50) using Separation of Variables Method-Cont’d:
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The original partial differential 
Equation (9.50):

Next, we will solve Equation (e), with a solution (p.310):
Y(y) = C coshβy + D sinhβy (k)

The boundary condition in Equation (f3) would make the constant coefficient C = 0. Consequently,
we will have the function Y(y) to take the form:

Y(y) = Dnsinhβny         with n=1,2,3,…n (m)

We have obtain the solution T(x,y) of Equation (9.50) after substituting the expressions of X(x) in 
Equation (j) and Y(y) in Equation (m) into Equation (b) and result in:
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9.6.1 Steady-State Heat Conduction Analysis in Rectangular Coordinate System – Cont’d

Solution of Partial Differential Equation (9.50) using Separation of Variables Method-Cont’d:
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The unknown coefficients bn in Equation (m) may be determined by using the remaining boundary 
condition in Equation (a4) that T(x,100) = 100, which leads to:
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By following the same procedure in in using the orthogonality of trigonometric functions in Section 9.5.1,
on p.298, We will determine the constants bn in Equation (p) to be:
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9.6.2 Steady-State Heat Conduction Analysis in Cylindrical Polar Coordinate System (p.311) 

We will explore how the separation of variables technique may be used in steady-state 
heat conduction analysis in cylindrical polar coordinate system by this case illustration.

The case we have here involves a solid cylinder 
with radius a and length L with temperature at 
the circumference and the bottom end 
maintained at 0oC and the temperature at the 
top surface is subjected to a temperature 
distribution that fits a specified function F(r) as 
shown in Figure 9.11. 

We realize the physical situation in which  
heat flows from the top end of the cylinder in 
boththe radial and longitudinal direction. We may thus designate the temperature in the 
cylinder by T(r,z) in a cylindrical polar coordinate system.

The governing PDE for T(r,z) in a steady-state heat conduction as described above 
may be obtained by selecting the right terms in Equation (9.14b) in cylindrical polar 
coordinate system in the following form:

      0,,1,
2

2

2

2














z

zrT
r

zrT
rr

zrT (9.52)

with specified boundary conditions:
and

T(a,z) = 0

T(0,z) ≠ ∞

(a1)
(a2)
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      0,,1,
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












z

zrT
r

zrT
rr

zrT (9.52)

with specified boundary conditions: T(a,z) = 0 T(0,z) ≠ ∞ (a1, a2))
(a3)

Solution of the Partial Differential Equation using Separation of Variable Technique:

T(r,0) = 0

Following the usual procedures in separation of variable technique (p.312) , we let:

T(r,z) = R(r) Z(z) (b)

where the functions R(r) and Z(z) involve only one variable r and z respectively.

Upon substituting the above expression in Equation (b) into Equation (9.52), and after re-arranging 
the terms, we will get the following equality:

 
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



(c)

The only way that the above equality can exit is having both sides to be equal to a constant:

We thus have:
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We have thus split the PDE in Equation (9.52) into two separate ODEs as follows:
      02
2

2

 rRr
dr

rdR
dr

rRdr 

    02
2

2

 zZ
dz

zZd 

(e)

(f)

R(a) = 0
R(0) ≠ ∞
Z(0) = 0

Satisfying the conditions: (g1)
(g2)
(g3)
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9.6.2 Steady-State Heat Conduction Analysis in Cylindrical Polar Coordinate System – Cont’d

Solution of the Partial Differential Equation using Separation of Variable Technique-Cont’d:

The solution of the ODE in Equation (e) involves Bessel functions as in the case in Section 9.5.2 and 
in Equation (9.41) on p.305 to take the form:     :     rYBrJArR  00 

The condition specified condition in Equation (g2) results in having the constant coefficient in the 
above expression to be: B = 0, because the second term in the above solution in the above 
expression cannot be allowed in the expression because Y0(0)→-∞, which is not realistic. Hence we 
have:                                                            J0(βna) = 0 (j)

The separation constant β is obtained from Equation (j), and there are multiple roots of that equation, with: 
β = β1, β2, β3,…...βn with n = 1,2,3,….,n. The solution of other ODE in Equation (f)  is:

Z(z) = C cosh(βz) + D sinh(βz) (k)

Substitution of the condition Z(0) = 0 in Equation (a3) into Equation (k) will lead to the constant C = 
0. We will thus have: Z(z) = D sinh (βz). However, since Z(z) involve the multi-valued βn, We may 
express Z(z) in the form: Z(z) = Dn sinh(βnz) (m)

We can thus express the solution T(r,z) in Equation (9.52) in the form of: 
T(r,z) = [AnJ0(βnr)][Dnsinh(βnz)] with n = 1,2,3,…..n, or in a more compact form: 

     zrJbzrT b
n

nn  sinh,
1

0




 (9.53)

Where bn are multi-valued constant in the the above equation that may be obtained by using the 
Fourier-Bessel relation as expressed on P. 307, resulting in the following form:

 
    ...............,3,2,1

sinh
2

0 02
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2   nwithdrrrJ
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nn
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
(n)
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9.7 Partial Differential Equations for Transverse Vibration 
of Cable Structures (p.314)

Transverse vibration of strings (equivalent to long flexible cable structures in reality) are used      
commonly used in structures such as power transmission lines, guy wires, suspension bridges.  

These structures, flexible in nature, are vulnerable to resonant vibrations, which may result in
devastations in public safety and property losses to our society. 

A cable suspension
Bridge at the verge 
of collapsing:

Long power transmission lines Radio tower supported by guy wires

The world famous
Golden Gate
Suspension Bridge
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9.7.1 Derivation of partial differential equation for free vibration of cable structures

We begin our derivation of math models for the vibration
analysis of strings (equivalent to long flexible cables) with 
an initial sagged shape that can be described by a function
f(x) as illustrated in Figure 9.15.

Figure 9.15 A Long Cable Initially 
in Statically Equilibrium State

Following idealizations (or hypotheses) were made in 
the derivation of mathematical modes for free vibration 
analysis of cable structures: 

(1) The cable is as flexible as a string.  
It means that the cable has no strength to resist bending. Hence we will exclude the bending      

moment and shear forces in our subsequent derivations. 

(2)  There exists a tension in the string in its free-hung static state as shown in Figure 9.15.  
This tension is so large that the weight, but not the mass, of the cable is neglected in the 
analysis.

(3)  Every small segment of the cable along its length, i.e. the segment with a length x 
moves in the vertical direction only during vibration.

(4) The vertical movement of the cable along the length is small so the slope of the deflection 
curve of the cable is small.

(5) The mass of the cable along the length is constant, i.e. the cable is made of same material 
along its entire length.
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9.7.1 Derivation of partial differential equation for free vibration of cable structures – Cont’d

A slight instantaneous lateral movement of the cable in 
Figure 9.15 at time t = 0 will  result in laterally vibrate
up-and-down in the x-y plane  as shown in Figure 9.16(a)

(a) Instantaneous shape at time t (b) Forces on a segment (Detail A)

Figure 9.16 Shape of a vibrating Cable

Figure 9.17 Free-body Force diagram 
of a vibrating cable

Let the mass per unit length of the string be designated by m.  The total 
mass of string in an incremental length x in Figure 9.16 (b) and 9.17 
will thus be (mx). 
The condition for a dynamic equilibrium at time t as 
illustrated in Figure 9.17 according to Newton’s 
second law presented in the equation of motion has 
the following relationship:
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9.7.1 Derivation of partial differential equation for free vibration of cable structures – Cont’d

Fig. 9.17 Free-body force diagram

We mentioned in the last slide that the PDF that we will 
use to model for free lateral vibration analysis of the cable
May be derived from Newton’s Second law of dynamics:

We further realize that the mass of the segment 
of the cable in Figure 9.17 may be expressed to
be: M= m∆x, in which m= mass of the cable per
unit length, and the acceleration is equal to:

where u(x,t)= instantaneous
deflection (magnitude) of the 
vibrating cable at x.

We assume this dynamic force acts at the mass 
center as shown in Figure 9.17.

We may derive the following expression for the dynamic force equilibrium on a small section of the cable at time t:

We may delete the term: ∆Psin(α+∆α) in the above expression because both ∆P and ∆α are small. We thus have 
the following for our further derivation:

     
x

txxu




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x
txu





),(tansin But since ,

we will have the following expression after substitutions of the above relationships in the dynamic force 
equilibrium equation:

, and
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51

,



9.7.1 Derivation of partial differential equation for free vibration of cable structures – Cont’d
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If we divide every term in the last expression we will obtain the following expression:
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By imposing the condition that the function of the lateral deflection u(x,t) of the vibrating cable varies
(changes) its magnitudes continuously along the cable length in the x-coordinate, i.e. ∆x→0, and the
increment of u(x,t), i.e. ∆u is small enough to be neglected (i.e. ∆u→0), the above expression may be
expressed in the following form: 
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We thus have the PDE for the free vibration analysis of long flexible cable in the form of:
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
 (9.54)

where 
m
Pa  with P = tension in the string with a unit of Newton (N)  and m = mass of 

the cable per unit length in kg/m. The unit for the constant a in Equation 
(9.54) is thus m/s. 
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9.7.2 Solution of PDE for free vibration analysis of cable structures (p.318)

We will demonstrate the application of Equation (9.54) for the 
free vibration analysis of a long cable structure illustrated in 
Figure 9.18.

The cable initially has the shape in the dotted curve in Figure 
9.18 that can be described by function f(x).

Lateral vibration of the cable with instantaneous magnitudes u(x,t)
is induced to the cable by a small instantaneous disturbance with a slight vertical push to the cable downward
that produces the instantaneous shape of the cable as shown in the sloid curve in the same figure at time t.

The free vibration of the cable with the lateral amplitudes u(x,t) is sustained by the “mass” of the cable material
and its inherit “elasticity” of the cable. Our analysis is to solve u(x,t) for the physical situation described above. 

We will use Equation (9.54) to solve for the u(x,t) by the separation of variables technique, as we did in 
Section 9.6 for heat conduction analysis. We will thus have the following mathematical model for the solution:
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The PDE: (9.54)

The initial conditions:      xfxutxu
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(9.55a)

(9.55b)

(9.56a)

(9.56b)
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The partial differential equation: (9.54)
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(9.55a)

(9.55b)
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Solution of Partial Differential Equation (9.54) by Separation of Variables Method (p.319):

We will  need to separate these two variables x and t from the function u(x,t) in Equation (9.54) by 
letting: u(x,t) = X(x) T(t) (9.57)

The relation in Eq. (9.57) leads to:
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Substituting the above expressions into Equation (9.54) will lead to:

2

2

2

2

2

)(
)(

1)(
)(

1
dx

xXd
xXdt

tTd
tTa

LHS = = RHS = a constant (-β2)

2
2

2

2

2

2

)(
)(

1)(
)(

1 
dx

xXd
xXdt

tTd
tTa

(9.58)We thus have:
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We will thus get two ordinary differential equations from (9.58):
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 xX
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(9.59)

(9.61)

After applying the same separation of variables as illustrated in Eq. (9.57) on the specified 
conditions in Equations (9.55) and (9.56), we get the two sets of ODEs with specific 
conditions in the following expressions:
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 tTa
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tTd  0)()( 2
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 xX
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T(0) = f(x) (9.60a)

0)(

0


tdt

tdT (9.60b)

X(0) = 0

X(L) = 0

(9.62a)

(9.62b)

Both Equations (9.59) and (9.61) are linear 2nd order ODEs with their solutions to be in the 
following forms:
T(t) =  A Sin(βat) + B Cos(βat) (9.63) X(x)  = C Sin(βx) + D Cos(βx) (9.64)

9.7.2 Solution of partial differential equation for free vibration analysis of cable structures – Cont’d
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9.7.2 Solution of partial differential equation for free vibration analysis of cable structures – Cont’d

u(x,t)  = [A Sin(βat) + B Cos(βat)][ C Sin(βx) + D Cos(βx)]

T(t) =  A Sin(βat) + B Cos(βat) X(x) = C Sin(βx) + D Cos(βx)

where A, B, C, and D are arbitrary constants need to be determined from the given initial and
boundary conditions given in Eqs. (9.60a,b) and (9.62a,b)

From Eq. (9.62a): X(0) = 0:

Determination of arbitrary constants:
Let us start with the solution: X(x)  = C Sin(βx) + D Cos(βx) in Eq. (9.64):

C Sin (β*0)  +  D Cos (β*0)  =  0, which means that D = 0 X(x) = C Sin(βx) 

Now, from Eq. (9.62b): X(L) = 0: X(L)  =  0  =  C Sin(βL)

At this point, we have the choices of letting C = 0, or Sin (βL) = 0 from the above 
relationship. A careful look at these choices will conclude that C ≠ 0 (why?), we thus have:

Sin (βL) = 0
The above expression is a transcendental equation with an infinite number of roots for the 
solutions with βL= 0, π, 2π, 3π, 4π, 5π…………nπ , in which n is an integer number. 
We may thus obtain the values of the “separation constant, β” to be:

..)..........4,3,2,1,0(  n
L

n
n

 (9.66) 56

The lateral amplitude of vibration cable u(x,t) in Figure 9.18 or the solution of Equation (9.54) can thus be 
expressed by sustituting the expressions in Equations (9.63) and (9.64) in Equation (9.57) to give:



u(x,t)  = [A Sin(βat) + B Cos(βat)][ C Sin(βx) + D Cos(βx)]

Now, if we substitute the solution of X(x) in Eq. (9.64) with D=0 and βn = nπ/L with n = 1, 2, 3,..
into the solution of u(x,t)  expressed in the following form: 

We will get:
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By combining constants A, B and C in the above expression, we have the interim solution of
u(x,t) to be:
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We are now ready to use the two initial conditions in Eqs (9.55.a) and (9.55b) to determine 
constants an and bn in the above expression:

Let us first look at the condition in Eq. (9.55b): 0),(

0






tt
txu

0 0

( , ) 0
n n

t t

u x t n a n at n at nCos Sin Sin x
t L L L La b   

 

       

But since 0nSin x
L


 (why?) an = 0

1
( , )

n
n

n a n au x t Cos t Sin x
L Lb  



 
Thus, the only remaining constants to be determined are: bn in the above expression.

9.7.2 Solution of partial differential equation for free vibration analysis of cable structures – Cont’d
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Determination of constant coefficients bn in the following expression (p.321):

1
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The last remaining condition of u(x,o) = f(x) in Equation (9.55a) will be used for this purpose, 
in which f(x) is the given initial shape of the string.

There are a number of ways to determine the coefficients bn in the above expression. What we 
will do is to follow the orthogonality of trigonometric functions in Section 9.5.1 (p.302) to determine 
the coefficient bn in the following way:

Thus, by letting u(x,0) = f(x), we will have:
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The complete solution of the amplitude of lateral vibrating string u(x,t) becomes:
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9.7.2 Solution of partial differential equation for free vibration analysis of cable structures – Cont’d

58



9.7.3 Convergence of Series Solutions (p.322)

Solution to partial differential equations by the separation of variables technique such 
as presented in Sections 9.5 to 9.7 include summations of infinite number of terms 
associated with the infinite number of roots of transcendental equation (or characteristic 
equations as mentioned in Chapter 4.The solution in Equation (9.69) for the PDE in 
Equation (9.54) is also in the form of infinite series.  

Numerical solutions of these equations can be obtained by summing up the solutions 
with each assigned value of n, that is with n = 1, 2, 3, …….to a very large integer 
number. 

In normal circumstances, these infinite series solutions should converge fairly rapidly, 
so one needs only to sum up approximately a dozen terms with the number n up to 12 
for reasonably accurate solutions of the problems.. However, the effect of the 
convergences of infinite series, such as the one in Equation (9.69) on the accuracy of 
the analytical results remains a concern to engineers in their analyses.

We will demonstrate the convergence of a series solution related to Equation (9.69) for 
the vibration of a long cable similar to the situation depicted in Figure 9.18 with L = 20 
m and the constant coefficient a = 120 m/s. We assume that the initial shape of the 
cable can be described by a function   x

L
xf sin25.0

    



















1

20

0 20
sin

4
sin6cos

40
11,5

n
xdxnnnu 

The magnitude of the amplitude of vibrating cable at x = 5 m at t = 1 second is from Equation 
(9.69) is of the form: 

or in the form with numerical values of n = 1,2,3,….,n:
u(5,1)  = u1 + u2 + u3 + u4 + u5 +………………………..+ un 59



9.7.3 Convergence of Series Solutions – Cont’d

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16
1.6
E-2

3.8
E-2

2.8
E-2

0 -9.38
E-3

3.22
E-3

9.38
E-3

0 -5.63
E-3

1.14
E-3

5.63
E-3

0 -4.02
E-3

5.77
E-4

4.02
E-3

0

We used the MicroSoft Excel software to compute the numerical values of u(5,1) with 
n = 1,2,3,…,16 with the computed results shown in the following Table:

and with more terms with additional values of n (up n = 30) in Figure 9.19:

5 10 15 20 25 30

0.04

0.02

0.02

0.04

u n

n

Figure 9.19 Convergence of infinite series solution of 
Equation (9.69) at x = 5, t=1

We observed from this particular case of numerical solutions of the infinite series solution 
of Equation (9,69) that inclusion of the first 20 terms in the series (i.e., n = 1,2,3,…..,20) 
would offer reasonably accurate solution of u(5,1) because of the continuous diminishing 
of the effects of the values of u(5,1) with the inclusion of terms with additional terms with
n-values, as illustrated in this figure. 
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9.7.4 Modes of Vibration of Cable Structures (p.323)

x

X = 0

X

L

Shape @ t = 0: f(x)
Instantaneous
Displacement 
@ x and time t: u(x,t)

Vibration after t = 0+

Initial shape

We have just derived the solution on the AMPLITUDES of vibrating cables, u(x,t) to be:

0
1

2( , ) ( )
L

n

n x n at n xu x t f x Sin dx Cos Sin
L L L L

  



   
 

  (9.69)

We realize from the above expression that the solution consists of INFINITE number of terms
with n = 1, n = 2, n = 3,……… What it means is that each term alone in the infinite series in 
Equation (9.69) is a VALID solution. Hence: u(x,t) with one term with n = 1 only is one possible 
solution, and u(x,t) with n = 2 only is another possible solution, and so on and so forth.

Consequently, because the solution u(x,t) also represents the INSTANTANEOUS SHAPE
of the vibrating string, there could be many POSSIBLE instantaneous shape of the vibrating 
string depending on what the terms in Eq. (9.69) are used.  

Predicting the possible forms (or INSTATANEOUS SHAPES) of a vibrating string is called
MODAL ANALYSIS 61



The First Three Modes of Vibrating Cables:
We will use the solution in Eq, (9.69) to derive the first three modes of a vibrating string.

Mode 1 with n = 1 in Eq. (9.69):

1 1
( , ) at nx t Cos Sin x

L Lu b     
 

The SHAPE of the Mode 1 vibrating string can be illustrated according to Eq, (91.71a) as:

We observe that the maximum amplitudes of vibration occur at the mid-span of the string,
As illustrated in Figure 9.20.
The corresponding frequency of vibration is obtained from the coefficient in the argument
of the cosine function with time t in Equation (9.69), i.e.: 

(9.70)

where P = tension in Newton or pounds, and m = mass density of string/unit length
in kg/m3 or slugs/in.

9.7.4 Modes of Vibration of Cable Structures – Cont’d

(9.69)

m
P

LL
aLaf

2
1

22
/

1 



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9.7.4 Modes of Vibration of Cable Structures – Cont’d

Mode 2 with n = 2 in Eq. (9.69):
we will have the amplitude of the vibrating cable to be:

2 2

2 2( , ) ax t Cos t Sin x
L Lu b     

 
(9.71a)

Possible shape of the
cable in Mode 2 vibration:

Mode 3 with n = 3 in Eq. (9.69):
m
P

LL
aLaf 1

2
/2

2 


Frequency of Mode 2 vibration: (9.72)

3 3

3 3( , ) ax t Cos t Sin x
L Lu b     

 
(9.73a)

Possible shape of the
Cable in Mode 3 vibration:

m
P

LL
aLaf

2
3

2
3

2
/3

3 


Frequency of Mode 3 vibration: (9.74)
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Modal analysis provides engineers with critical information on where the 
possible maximum amplitudes may exist when the string vibrates, and the 
corresponding frequency of occurrence.

Identification of locations of maximum amplitude allows engineers to 
predict possible locations  of structural failure, and thus the vulnerable 
location of string (long cable) structures. 

Of course, the multiple number of natural frequencies fn such as indicated 
in the Equations (9.70), (9.72) and (9.74) for the cable in Figure 9.18 with 
Mode number n =1,2,3, are the indicators of what the frequencies of the 
applied intermittent loads should be avoided to this kind of structures in 
order to avoid the devastating resonant vibration of the structure. Modal 
analysis of cable structures such as illustrated in Figures 9.12-9.14 is thus 
a critically important part of the analysis. 

Physical Importance of Modal Analysis in Vibration of Cable Structures 
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Example 9.6 – A numerical case illustration of vibration analysis of a cable structure (p.325). 

A flexible cable 10 m long is fixed at both ends with a 
tension of 500 N in the free-hung state (see the figure 
in the right. 

The cable has a diameter of 1 cm and with a mass 
density ρ = 2.7 g/cm3.

If the cable begins to vibrate by an instantaneous but 
small disturbance from its initial shape that can be 
described by the function f(x) = 0.005x(1-x/10). Determine the following:

a) The applicable differential equation for the amplitudes of vibration of the cable 
represented by u(x,t) in meters, in which t is the time into the vibration with a 
unit of second (s),

b)    The mathematical expressions of the applicable initial and end conditions
c)    The solution of u(x,t) of the differential equation in meters
d) The solution of amplitude of the vibrating cable in Mode 1, i.e., u1(x,t) with the 

magnitude and location of the maximum deflection of the cable in this mode of 
vibration.

e)    The numerical values of the frequencies of the first and second mode of vibration
f)      The physical significance of these mode shapes.
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Example 9.6 – A numerical case illustration of vibration analysis of a cable structure-Cont’d. 

Solution (p.326):

We realize the following specific conditions:

The length of the cable L = 10 m, with a diameter d = 1 cm = 0.01 m
The cable is made of aluminum with a mass density ρ = 2.7 g/cm3

The cable is subjected to a tension P = 500 N and with initial sag described by 
the function f(x):   






 

10
1005.0 xxxf

a) The applicable differential equation for the amplitudes of vibration is Equation (9.54)

2

2
2

2

2 ),(),(
x

txua
t

txu






 (9.54)

m
Pa  in which P = tension in the cable = 500 N and m = mass per unit length which 

needs to be computed with given conditions. The mass per unit length of the 
cable is m = M/L where M = total mass of the cable with M = ρV with V being the 
volume of the cable. 

We will get the volume of the cable be computed by the expression 34
2

1085.7
4

mxLdV 


We will thus have the total mass of the cable M = ρV = (2.7x103)(7.85x10-4) = 2.12 kg, leading to 
the mass per unit length of the cable to be 0.212 kg/m. The constant coefficient according to the 
expression in Equation (9.54) is: 

sm
m
Pa /56.48

212.0
500



The applicable PDE in equation (9.54) thus takes the form:

(a)
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with the constant coefficient a in the above equation determined by the following expression:



Example 9.6 – A numerical case illustration of vibration analysis of a cable structure-Cont’d. 

b) The mathematical expressions of given initial and end conditions:
Solution – Cont’d (p.326)

The initial conditions:

      





 

 10
1005.00,,
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(b1)

    00,,

0








xu
t

txu

t

 (b2)
The end conditions:

    0,0,
0




tutxu
x

    0),10(,, 


tutLutxu
Lx

(c1)

(c2)

c) The solution of u(x,t) of Equation (a) satisfying the given  conditions in Equations (b1, 
b2) and Equations (c1 and c2) will be obtained as follows:

The solution of Equation (a) is similar to that of Equation (9.69) with a = 48.56 m/s 
in the following expression:
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67



Example 9.6 – A numerical case illustration of vibration analysis of a cable structure-Cont’d. 
Solution – Cont’d (p.322)

d) The amplitude of the vibrating cable in Mode 1, i.e., u1(x,t) with the magnitude and 
location of the maximum deflection of the cable in this mode of vibration:
The required solution is obtained by letting n = 1 in Equation (e) as:

  xtxttxu 314.0sin25.15cos02376.0314.0sin25.15cos2111.0, 31 













 






(f)

The maximum amplitude occurs at the mid-span of the cable at x = 5 m, and at the time when 
cos15.25t = 1.0. We thus have the maximum amplitude u1,max = 0.02376 m, or 2.376 cm at x = 5 
m and at time  15.25t = π, or time t = π/15.25 = 0.2 s.

e) The numerical values of the frequencies of the first and second mode of vibration:
We may use Equations (9.70) and (9.72) to compute the numerical values of the frequencies of 
the first and second mode of vibration as follows:

Hz
xm

P
L

f 43.2
212.0

500
102
1

2
1

1  Hz
m
P

L
f 86.4

212.0
500

10
11

2 for Mode 1, and for Mode 2

f) The physical significance of these mode shapes to the design engineer
Engineers will use the outcomes of the above modal analysis to advise the users of this cable
structure on possibility of devastating resonant vibration of the cable structure should the 
frequency of applied cyclic force, such as wind force coincides any of the natural frequencies 
computed in Part (e) in the solutions. The users will also be made aware of the locations 
where maximum amplitudes of vibration may occur as the mode shapes indicate in the modal 
analysis. They should avoid placing delicate attachments to these locations on the cable 
structure to avoid potential damages due to excessive vibration at these locations. 
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9.8 Partial Differential Equations for Transverse Vibration of Membranes (p.328)

Solids of plane geometry, such as thin plates are common appearance in machines and 
structures. Thin plates (or thin diaphragms) can be as small as printed electric circuit 
boards with micrometers in size or as large as floors in building structures. Like flexible 
cables, thin flexible plates are normally flexible and be vulnerable to transverse vibration. 
In some cases, these plates may rupture due to resonant vibrations, resulting in significant 
loss of property, and even human lives. 

This section will derive appropriate PDEs that allow engineers to assess the amplitudes 
in free vibration of thin plates that are flexible enough to be simulated to thin membranes. 
Engineers may use this mathematical model for their modal analysis for the safe design 
of these types of machine components and structures. 
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9.8.1 Derivation of partial differential equation for plate vibrations (p.328)

We will derive the mathematical model for the transverse 
vibration of thin plates with the following idealizations and 
hypotheses:
1)  The derivation of mathematical expressions is based  

on the lateral (vertical) displacement of solids of plane  
geometry that are flexible and offer no resistance to  
bending. In reality, the structure fits the description of 
“membranes“ in the subsequent analysis.

4) The thin plate is initially flat with its edges fixed. There is an initial sag represented by a 
function f(x,y) sustained by in-plane tension P per unit length of the plate in all directions. 
The tension P is large enough to justify neglecting the weight of the plate.

5) Figure 9.23 defines the plate in the (x,y) plane with lateral displacement z(x,y,t), the amplitude 
of vibration of the plate at the locations defined by the x-y coordinates and at time t.

6) Every part of the plate vibrates in the direction perpendicular to the plane surface of the 
plate, i.e., in the z-coordinate as illustrated in Figure 9.24 The slopes of the deformed surface 
of the plate at all edges are small.

7) The mass per unit area of the plate, designated by the symbol (m) is uniform throughout 
the plate.

2)Thin plates with unsupported large plane areas that are 
sufficiently flexible in lateral deformations.

3) Being flexible, there is no shear stress in the deformed thin plates. 

Figure 9.23 Transverse vibration of thin plate

We notice that the solution of the amplitudes of vibrating membrane (or thin plate) z(x,y,t) now 
involves 3 independent variables: x,y and t. We may well image that it would be a much more 
complicated analysis problem than the cases that we have covered so far in this book.
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9.8.1 Derivation of partial differential equation for plate vibrations – cont’d (p.329)

Figure 9.24 A free-body diagram
of forces in an element 
of vibrating membrane
at time t

Figure 9.24 is a free-body diagram which shows all forces acting 
on a small deformed element of the plate during a lateral 
vibration. The situation satisfies a dynamic equilibrium condition 
with the summation of all forces present at time t be equal to 
zero. Mathematically we may express this condition in the form: 

0 zF
The induced dynamic force F by Newton’s second law 
plays a major role in the formulation of the above 
equilibrium of forces. Mathematically, this force may be 
expressed as:  

2

2 ,,
t

tyxzmF





From Figure 9.24, we have the following dynamic equilibrium 
conditions:
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where m = mass per unit area of the plate material.

Idealization No. 6 indicates that both angles α and β are small, leading to the following approximate 
relationships:
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9.8.1 Derivation of partial differential equation for plate vibrations – cont’d

Substituting the above 4 approximate relationships into Equation (9.75) will result in the following 
expression:
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The following expression is obtained by dividing the above expression by ∆x∆y:
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Given that the lateral deformation of the plate continuously varying with the locations on the 
plane defined by the x- and y-coordinate, we should have the following relationships shown in 
the next slide.
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9.8.1 Derivation of partial differential equation for plate vibrations – cont’d

The equilibrium equation in (9.75)  thus has the following form with ∆x→0 and ∆y→0 for continuous 
variation of the amplitude of vibration of the plate in both x- and y-coordinates with:
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or in the form of: (9.76)

where the constant a in Equation (9.76) has the similar form as in Equation (9.54) but with different 
meaning:

m
Pa  (9.77)

where P is the tension per unit length with unit N/m, and m is the mass per unit area kg/m2. The 
constant a thus has a unit of m/s.
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9.8.2 Solution of a Partial Differential Equation for Thin Plate Vibration (p.331) 

We will use Equation (9.76) to compute the magnitudes of a 
transverse vibrating thin plate such as a computer mouse pad, 
induced by a slight instantaneous disturbance in the z-direction 
in Figure 9.25. 

We will have the following PDE and the given appropriate initial 
and boundary conditions for the solution of the magnitudes 
of the vibrating plate at given time t, i.e. z(x,y,t) in Equation (9.76):

Figure 9.25 Plan view of a flexible
thin plate undergoing a 
transverse vibration.

     




















2

2

2

2
2

2

2 ,,,,,,
y

tyxz
x

tyxza
t

tyxz

A) The boundary conditions:
    0,,0,,

0



tyztyxz

x

    0,,,, 


tybztyxz
bx

  0,0,,,(
0




txztyxz
y

    0,,,, 


tcxztyxz
cy

B) The initial conditions:
   yxftyxz

t
,,,

0




   yxg
t

tyxz

t

,,,

0








(9.76)

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

The function g(x,y) in Equation (c2) is another given function that describes the velocity of the plate 
across the plane of the plate at the inception of the vibration. 74



9.8.2 Solution of a Partial Differential Equation for Thin Plate Vibration – Cont’d 
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(a1) (a2)
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(c2)

We will use the separation of variables techniques to solve the above equations with the specified boundary 
and initial conditions. This technique requires the solution z(x,y,t) of Equation (9.76) to be the product of 3
separate functions each contains only one of the 3 independent variables as:

Z(x,y,t) = X(x)Y(y)T(t) (9.78)

Substituting the expression in Equation (9.78) into Equation (9,76) will lead to the following expression:
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The equality of both sides in the above express is possible if both sides equal to a constant by
the principle of mathematics. We thus have the following valid expression instead:
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where λ in Equation (d) is the first separation constant in this analysis

LHS = = RHS

LHS = = RHS

Equation (d) results in the following 2 ordinary differential equations (ODE):
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and another equality leads to 
the 2nd ODE:
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9.8.2 Solution of a Partial Differential Equation for Thin Plate Vibration – Cont’d 
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(a1) (a2)
(b1)(b2)
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For the same reason; the validity of the equality in Equation (f) requires that both sides of the equality to be 
a same constant as shown below:
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where μ is the second separation constant in expression (g).

(g)

We may derive another two ordinary differential equations from the expression in Equation (g): 
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We have thus separate the variables in PDE in (9.76) onto 3 ODEs using the separation of
variables technique in Equation (9.78) as shown below:

     




















2

2

2

2
2

2

2 ,,,,,,
y

tyxz
x

tyxza
t

tyxz

    02
2

2

 xX
dx

xXd 

    02
2

2

 yY
dy

yYd 

      0222
2

2

 tTa
dt

tTd 

(h)

(j)

(e)

(9.76)

76



9.8.2 Solution of a Partial Differential Equation for Thin Plate Vibration – Cont’d 
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We notice that all the 3 ordinary differential equations (ODE) in Equations (e), (h) and (j) are 2nd order
linear ODEs. Solutions of these equations are available in Section 8.2 (p.243), as shown below:

X(x) = c1cosλx + c2sinλx

Y(y) = c3cosμy + c4sinμy

  tactactT 22
6

22
5 sincos  

(k1)

(k2)

(K3)

We may follow the similar procedures presented in Section 9.5.1 (p.298), 9.6.1 (p.308) and 9.7.2 (p.318) in 
determining he constants c1, c2, c3 and c4 in Equations (k1)and (k2), and we may determined the two 
separation constants λ and μ to be: λ=mπ/b with m = 1,2,3,…., and μ=nπ/c with n = 1,2,3,…., respectively, 
as well as c1=c3=0 using the conditions in Equations(a1) and (a2). Consequently, we will have:
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The constant c5 and c6 involved with the solution in Equation (k3) may be determined with the initial 
conditions specified in Equations (c1) and (c2) for z(x,y,t):in the following way: 
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We may express the solution of PDE in Equation (9.76) in the following form:
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where the multi-valued constant coefficients Amn and Bmn are determined by the two remaining initial 
conditions in Equations (c1) and (c2) with the forms:
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with m,n = 1,2,3,….
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9.8.3 Numerical solution of the Partial Differential Equation for thin plate vibration (p.334)

Numerical solution of the amplitudes of transverse vibration of flexible plates given in 
Equation (9.79) with coefficients in Equations (9.80a) and (9.80b) is a much more tedious 
and complicated than one would imagine. However, numerical solution can offer engineers 
much needed perception on the natural frequencies of the plate structures – much more so 
than what we may observe from the analytical solutions that we may obtain from the 
aforementioned math expressions in the aforementioned equations.

What we will present in this section is the numerical solution of Equation (9.79) for the 
shapes of a thin flexible plate (a computer mouse pad) illustrated 
in Figure 9.25 for its first three modes in vibration.

Dimensions of this plate is shown in lower figure in the right
with the edges b=10” and c=5” and thickness of 0.185”. 
The pad is made of synthetic rubber, so it is flexible.

The pad has fixed edges with initial sagging that can be described
by a function  f(x,y) = (10-x)(5-y) with an in-plane tension,
P = 0.5 lbf/in

Vibration of the pad induced by a slight instantaneous disturbance
lateral to the pad from a static equilibrium condition (i.e.,
zero velocity) with which g(x,y) = 0.in Equation (c2). 
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9.8.3 Numerical solution of the Partial Differential Equation for thin plate vibration-Cont’d

We will use Equation (9.76) to solve for the magnitudes of this thin plate:
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(a1) (a2)

(b2)(b1)

(c1) (c2)= (10-x)(5-y) =0
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The constant coefficient “a” in the RHS of Equation (9.76) can be computed to be:

(d)

The frequency ωmn required to compute the periods T is expressed in Equation (p) in Section 9.8.2 with 
eigenvalues λm = mπ/10 and μn = nπ/5 with m, n = 1,2,3,……..as shown in the same Section.
The mode shapes of this plate from free lateral vibration analysis is computed by the following 
expression:
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We realize that m, n = 1, 2, 3, ……………., and b = 10” and c=5” in both Equations (9.81) and (9.82).
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9.8.3 Numerical solution of the Partial Differential Equation for thin plate vibration-Cont’d

● Graphical solutions of the first three (3) modes of free vibration of the thin plate 
with m=n = 1,2 and 3:
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With:  m, n = 1, 2, 3, ……………., and b = 10” and c=5” in the above expressions.

Modal analysis of plate vibration is a very important engineering analysis that relates to the safe design of this 
type of structures because many such structures are expected to survive cyclic load applications. Such situation 
is vulnerable to structural failures in resonant vibration should the frequency of the applied cyclic loads coincides 
with any natural frequencies of the plate found in the modal analysis. Solutions for these natural frequencies of 
plates of given geometry and material properties requires the solution of the shape of the deformed plates at 
various modes, and it will also provide engineers with possible shapes of the plate under each of these modes of 
vibration. 

In-depth descriptions of resonant vibration and modal analysis of structures were presented in both Sections 
8.7.2  and 8.9.

Natural frequencies of the plate illustrated in Figure 9.25 requires us to compute the amplitudes of the plate
z(x,y,t) in Equation (9.81) given below, with specific conditions as presented in Equations (a1,a2, b1, b2, c1 and 
c2):
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Readers are reminded that for plate vibration analysis, Mode 1 vibration is obtained with m=n=1, 
Mode2 vibration with m=n=2, and Mode 3 vibration with m=n=3 are used in the above formulations.
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9.8.3 Numerical solution of the Partial Differential Equation for thin plate vibration-Cont’d

● Natural frequencies of the first three (3) modes of free vibration of the thin plate 
with m=n = 1,2 and 3:
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We have obtained the expression of the amplitude of a plate, z(x,y,t) in a free-vibration analysis shown in
Equation (9.81), from which we may get the natural frequencies of the plate from the coefficient in the argumen
of the cosine function:“cos(aωmn)t” in Equation (9.81). Hence the natural frequencies of the plate are: aωmn, 
with m=1,2,3,….., and n = 1,2,3,……..

(d)  
sin

ft
in

inlb
sftinlbPga

m

f /05.35312
/00155.0

/2.32/5.0
2

2













We may compute the natural frequencies of the first 3 modes to be:

Mode 1 with m=n=1:

Mode 2 with m=n=2:

Mode 3 with m=n=3:

82



Modal shapes of thin plates require numerical solutions of z(x,y,t) of Equation (9.81) with 
m=n=1,2,3, which is a very tedious job. It will also be a great deal of laborious efforts to 
obtain graphical representations of these shapes. Consequently, we will use a commercially 
available MatLAB software (version R2015) available at the author’s host university to 
perform these computations and present the computed modal shapes of the plates in 
graphs for the solutions.

An overview of this software will be described in Section 10.5.2 of Chapter 10 (p.376), with 
inputs/output files for this analytical problem presented in Case 2 in Appendix 4 (P.473).

Graphical displays of the first two modal shapes of the thin plate with time t = 0, 1/8 and 1/4 
seconds for Mode 1 (m=n=1) and Mode 2 with m=n=2 at t=1/8 and ¼ seconds will be 
shown in  the next two slides. 

9.8.3 Numerical solution of the Partial Differential Equation for thin plate vibration-Cont’d
● Shapes of the vibrating thin plate at various modes:
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Modal ONE shapes of the thin plate at: (a) t=0, (b) t=1/8 second and (c) t=1/4 seconds

(a) At t=0, peak at ≈0.16” (b) At t=1/8 second, peak at ≈ 0.17 “

(c) At t = 1/4 seconds, Peak at≈0.14”
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Modal TWO shapes of the thin plate at: (c) t=1/8 second and (d) t=1/4 seconds

(c) At t=1/8 second, peaks at 0.0125 “ (d) At t=1/4 second, peaks at 0.03 “

These modal shapes provide engineers with possible shape changes of the plate in vibrations.
The illustrated shapes also indicate where the peak amplitudes of vibration of the flexible 
plate would occur, from which the design engineer should take precaution for not placing 
delicate attachments at these locations to avoid possible damages due to excessive
deformation of the plate structure.

The computed natural frequencies with: f1=78.94 rad/s, f2=157.88 rad/s and f3 = 236.82 rad/s
will remind the potential users of this plate structure to avoid such frequencies when applying 
intermittent loads in order to avoid the devastating resonant vibration of this thin plate.
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