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Chapter Learning Objectives

e Learn the physical meaning of partial derivatives of functions.

e Learn that there are different order of partial derivatives describing the
rate of changes of functions representing real physical quantities.

e Learn the two commonly used technique for solving partial differential
equations by (1) Integral transform methods that include the Laplace
transform for physical problems covering half-space, and the Fourier
transform method for problems that cover the entire space; (2) the
“separation of variable technique.”

e Learn the use of the separation of variable technique to solve partial
differential equations relating to heat conduction in solids and vibration
of solids in multidimensional systems.



9.1 Introduction
A partial differential equation is an equation that involves partial derivatives.

Like ordinary differential equations, Partial differential equations for engineering
analysis are derived by engineers based on the physical laws as stipulated in
Chapter 7.

Partial differential equations can be categorized as “Boundary-value problems” or
“Initial-value problems”; or “Initial-boundary value problems”:

(1) The Boundary-value problems are the ones that the complete solution of the partial
differential equation is possible with specific boundary conditions.

(2) The Initial-value problems are those partial differential equations for which the
complete solution of the equation is possible with specific information at one
particular instant (i.e., time point)

Solutions to most these problems require specified both boundary and initial
conditions.



9.2 Partial Derivatives (p.285):

A partial derivative represents the rate of change of a function involving more than one variable (2 in
minimum and 4 in maximum). Many physical phenomena need to be defined by more than one variable
as in the following instance:

Example of partial derivatives: The ambient temperatures somewhere in California depend on where and
where this temperature is counted. Therefore, the magnitude of the temperature needs to be expressed in
mathematical form of T(x,y,z,t), in which the variables x, y and z in the function T indicate the location at
which the temperature is measured and the variable t indicates the time of the day or the month of the
yaer at which the measurement is taken. The rate of change of the magnitude of the temperature, i.e., the
derivatives of the function T(x,y,z,t) needs to be dealt with the change of EACH of all these 4 variables
accounted with this function. In other words, we may have all together 4 (not just one) such derivatives to
be considered in the analysis. Each of these 4 derivative is called “partial derivative” of the function
T(x,y,z,t) because each derivative as we will express mathematically can only represent “part” (not whole)
of the derivative for this function that involves multi-variables.

There are two kinds of independent variables in partial derivatives:

(1) “Spatial” variables represented by (x,y,z) in a rectangular coordinate system, or (r,0,z) in a cylindrical
polar coordinate system, and

(2) The “Temporal” variable represented by time, t.



9.2 Partial Derivatives: - Contd oy
Mathematical expressions of partial derivatives (p.286)

We have learned from Section 2.2.5.2 (p.33) that the derivative
for function with only one variable, such as f(x) can be defined
mathematically in the following expression, with physical
meaning shown in Figure 9.1.:
afr(x) _ Jim f(X+Ax)— f(x) (2.9) .
dx AX—0 AX Figure 9.1

For functions involving with more than one independent variable, e.g. x and t expressed in
function f(x,t), we need to express the derivative of this function with BOTH of the independent
variables x and t separately, as shown below:

The partial derivative of function f(x,t) with respect to x only may be expressed in a similar
way as we did with function f(x) in Equation (2.9), or in the following way:

af (x,t) . flx+Ax,t)—f(x,t) (9.1)
= lim
dx Ax—0 Ax
We notice that we treated the other independent variable t as a “constant” in the above
expression for the partial derivative of function f(x,t) with respect to variable x .

Likewise, the derivative of function f(x,t) with respect to the other variable t is expressed as:

of (x,1) . Fxt+ A = f(x,1)
AR ALY (9.2)
ot ftI_I’)T(]) At




o2 Partial Derivatives: - contd

Mathematical expressions of higher orders of partial derivatives:
Higher order of partial derivatives can be expressed in a similar way as for ordinary functions,

such as: of (X+Ax,t) of (x1)

ot OX X (9.3)
—> = /4Im
0 X AX—0 AX
of (X,t+At) of (x,t)

and o f(xt) ot ot

oY) _ (9.4)
ot? ftl_l')T(]) At

There exists another form of second order partial derivatives with cross differentiations with
respect to its variables in the form: 0° f (x,t) _ 0” f(x,1)
oxot otox

9.3 Solution Methods for Partial Differential Equations (PDEs) (p.287)

(9.5)

There are a number ways to solve PDEs analytically; Among these are: (1) using integral
transform methods by “transforming one variable to parametric domain after another in the
equations that involve partial derivatives with multi-variables. Fourier transform and Laplace
transform methods are among these popular methods. The recent available numerical
methods such as the finite element method, as will present in Chapter 11 offers much
practical values in solving problems involving extremely complex geometry and prescribed
physical conditions. The latter method appears having replaced much effort required in solving
PDEs using classical methods. With readily available digital computers and affordable
commercial software such and ANSYS code, this method has been widely accepted

by industry. The classical solution methods appears less in demand in engineering analysis
as time evolves. 6



9.3 Solution Methods for Partial Differential Equations-Cont'd
9.3.1 The separation of variables method (p.287):

The essence of this method is to “separate” the independent variables, such as x, y, z, and t
involved in the functions and partial derivatives appeared in the PDEs.

We will illustrate the principle of this solution technique with a function F(x,y,t) in a partial differential
equation. The process begins with an assumption of the original function F(x,y,t), to be a product of
three functions, each involves only one of the three independent variables, as expressed in Equation
(9.6), as shown below:

Fx,y,1) = 1,00T(y)15(t) (9.6)

where f,(x) is a function of variable x only
f,(y) is a function of variable y only, and
f5(t) is a function of variable t only

Equation (9.6) has effectively separated the three independent variables in the original function

F(x,y,t) into the product of three separate functions; each consists of only one of the three
independent variables.

The 3 separate function f,, f, and f; in Equation (9.6) will be obtained by solving 3 individual ordinary
differential equations involving “separation constants.” We may than use the methods for solving

ordinary differential equations learned in Chapters 7 and 8 to solve these 3 ordinary differential
equations.

The partial differential equation that involve the function F(x,y,t) and its partial derivatives can thus
be solved by equivalent ordinary differential equations via the separation relationship shown in
Equation (9.6) . In general, PDEs with n independent variables can be separated into n ordinary
differential equations with (n-1) separation constants. The number of required given conditions
for complete solutions of the separated ordinary differential equations is equal to the orders of
the separated ordinary differential equations.



9.3 Solution Methods for Partial Differential Equations-Cont'd

9.3.2 Laplace transform method for solution of partial differential equations (p.288):

We have learned to use Laplace transform method to solve ordinary differential equations in Section 6.6,
in which the only variable, say “x”, involved with the function in the differential equation y(x) must cover the
half space of (o<x<w). Solution of the differential equation y(x) is obtained by converting this equation into
an algebraic equation by Laplace transformation with the “transformed expression F(s) in which “s” is the
Laplace transform parameter. The solution of the ordinary differential equation y(x) is obtained by inverting
the F(s) in its resulting expression. We have also use the Laplace transform method to solve a partial
differential equation in Example 6.19 (p.194) after having learned how to transform partial derivatives in

Section 6.7.

9.3.3 Fourier transform method for solution of partial differential equations (p.288):

Fourier transform engineering analysis needs to satisfy the conditions that the variables that are to be
transformed by Fourier transform should cover the entire domain of (-~, «). Mathematically, it has the

form: griox
)= f(x)je dx=F(e) 9.7)
The inverse Fourier transform is: 3[F(w)] = _I Flopdw (9.8)
The following Table 9.1 presents a few useful formula for Fourier transforms of a few selected functions.
Functions for Fourier Transform f(x) After Fourier Transform F(w)

(1) f(x-a) F(w)eiwa

(2) o(x)* 1

(3) u(x)" (iw) ™

@ et s 2a/(a? — w?)

(5) u(x)sinax ﬂ/(a2 +w?)

(6) u(x)cosax iw/(az _ wz)

*&(x) = Delta function, or impulsive function and u(x) is the unit step function. Both these functions are defined in Section 2.4.2

8



9.3 Solution Methods for Partial Differential Equations-Cont'd

9.3.3 Fourier transform method for solution of partial differential equations:-Cont'd
Example 9.2

Solve the following partial differential equation using Fourier transform method.
oT(xt) _ . AT (x,t)

PYe ot —0 < X < (9.11)
where the coefficient a is a constant. The equation satisfies the following specified condition:
T(xt)_, =T(x0)= f(x) (9.12)

Solution
We will transform variable x in the function T(x,t) in Equation (9.11) using Fourier transform in Equation (9,7):
T*(w,t) = J[T(x,t)] = '[iT(x,t)e““’xdx (a)
Apply the above integral to the left-hand-side of Equation (9.11) will yield:

:{M} T (M}mdx _ _w'T*(wt) from Equation (9.10), and
ox* - ox?

ot dt
Equation (9.11) has the form after the transformation:

o THot)= a2 I "(‘j(t”’t) (b)

S{QM} _ I:[M}iwxdx _ az% [T (ot = a@Ta_(twt) for the right-hand-side of Eq. (9.11)

Equation (b) is a first order ordinary differential equation involving the function T*(w,t) and the method
of obtaining the general solution of this equation is available in Chapter 7.

At this point, we need to transform the specified condition in Equation (9.12) by the Fourier transform
defined in Equation (a), or by the following expression:

T*(@0) = 3[T(x0)] = [ T(x0™dx = [ f(xp " dx = g(o) (c)



9.3 Solution Methods for Partial Differential Equations-Cont'd

9.3.3 Fourier transform method for solution of partial differential equations:-Cont'd
Example 9.2- Cont'd

We will solve the first order ODE in Equation (b) with the solution of T*(w,t) in
Equation (b) and obtain:

2
D 4

T*(o,t) = gk < (@
The solution of the partial differential equation in Equation (9.11) with the specified

condition in Equation (9.12) can thus be obtained by inverting the transform T*(w,t) to T(x,t)
using Equation (9.8) by the following expression:

)= o[ T ao = L[l e (@

where g(w) is available in Equation (c) to be the Fourier transformed specified
condition of T(x,0) in Equation (9.12).

10



9.4 Partial Differential Equations for Heat Conduction in Solids (p.291)

9.4.1 Heat conduction in engineering analysis
We have learned from Section 7.5 (p.217) that temperature variations in media is

induced by heat transmissions. This variation of temperature in media (solids or
fluids) is called temperature field.

Heat transfer is a very important branch of mechanical and aerospace engineering
analyses because many machines and devices in both these engineering disciplines
are vulnerable to heat. According to statistics, over 60% of electronics devices in the
US Airforce failed to functions due to excessive heating. Excessive heat flow can also
result in a high temperature fields in the structural media, which may result in serious
thermal stresses in addition to significant deterioration of material strength and
property changes, as presented in Section 7.5.

In this section, we will derive the partial differential equations for heat conduction in
solids in both rectangular and cylindrical polar coordinate systems, and solve these
equations by using separations of variables technique. Although many of these
problems can also be solved by advanced numerical techniques such as finite
difference and finite element methods, the classic solutions as will be presented in
this chapter, however, will offer engineers with solutions at anywhere in the solid
structure, which the numerical methods cannot offer the same. These numerical
methods, however, are often used for situations that involve complicated geometry,

loading and boundary conditions. 1



9.4.2 Derivation of partial differential equations for heat conduction analysis

Heat conduction equation is used to determine the temperature distributions induced by
heat conduction in solids, either by heat generation by the solids or by heat from external
sources.

This equation will be derived from the law of conservation of energy, in particular, the first
law of thermodynamics.

Control volume
N\ “'«& By referring to Figure 9.3 , a solid with a volume is
s X subjected to heat flow in the form of heat flux q(r,t) from
external sources to a small element (in the small open
circle) in the figure.

The heat leaving the element is q(r+Ar,t) with r designating
the spatial variables of (x,y,z) in a rectangular coordinate
system or (r,8,z) in a cylindrical polar coordinate system.

Since heat is a form of energy, we may use the law of

Figure 9.3 conservation of energy in the following block diagrams

to derive the mathematical expression for the case:

Rate of heat
generation by the

Rate of heat entering the +
solid element

solid element

Rate of heat leaving + R:ate of energy storage
the solid element in the solid element

12



9.4.2 Derivation of partial differential equations for heat conduction analysis — contd

We may use the following mathematical expressions to represent
the physical quantities in the solid shown in Figure 9.3.

Heat fluxes entering and leaving the small element in Figure 9.3
may be expressed by the Fourier law of heat conduction in the
following forms:

q(r,t)=FkVT(r,t) z

The energy storage in the element = change of internal
energy: Au = pcAT, in which p=mass density, c=specific heat .
Of the solid and AT=temperature rise or fall in the solid /

Fiqure 9.3

From the block diagram of energy conservation and the above mathematical representations of
physical quantities in the block diagram, we may establish the following partial differential equation
for the temperature variations in the entire solid to be:

OT(Y) _ o [kvT(r.t)]+ Qlr.) (9.13)

where k = thermal conductivity of the solid material, Q(r,t)= heat generation by the material
(such as Ohm heating of Q=iR? with i being the electric current in Ampere, and R is the electric
resistance of the material in Ohms.

13



9.4.3 Heat conduction equation in rectangular coordinate system

The general heat conduction equation in Equation (9.13) will take the following form
with T(r,t) = T(x,y,z,t):

oT  of, or] of or] of, oT
a 9.14
o T ax[kxax} ay{k 5‘y} az{k a}Q(Xy’Zt) 5.142)

in which k,, k, and k, are the thermal conductivities of the solid along the x-, y- and z-
coordinates respectively.

9.4.4 Heat conduction equation in cylindrical polar coordinate system:

Heat conduction equation in this coordinate system is obtained by expanding Equation (9.8) as follows
with T(r,t) = T(r,0,z,t):

or o, oT orT] 1[o, or] of, ot
=k k. — [+ —|—k k — 0,z,t
" ar[ rar} { ar} [ae ‘gae} 82[ oz }Q(r 2t) (9.14b)

where Kk, kg and k, are thermal conductivities of the material along the r-, 8- and z-coordinate
respectively.

14



9.4.5 General heat conduction equation (p.293):

Thermal conductivities k,, k, and k, in Equation (9.14a) and k,, kg and k, in Equation (9.14b) are used for
heat conduction analysis of solids with their thermophysical properties varying in different directions, such
as for fiber filament composites. For most engineering analyses, such variation of thermophysical

properties do not exist. Consequently a generalize heat conduction equation may be expressed as
follows

ot
where k = thermal conductivity of the material and Q(r,t) is the heat generated by the material
per unit volume and time.

VT (rt)+ Q(E,t) 1 8T (r,t) (9.15)

The symbol a in Equation (9.15) is “thermal diffusivity” of the material with its value equals

tor & = L , it is often used as a measure on how “fast” heat can flow by conduction

P£C in solids.

9.4.6 Initial conditions:
Complete solution of heat conduction equation in Equation (9.15) involves determining a number of
arbitrary constants according to specific initial and boundary conditions.
These conditions are necessary to translate the real physical conditions into mathematical expressions.
Initial conditions are required only when dealing with transient heat transfer problems in which
temperature field in a solid changes with elapsing time. The common initial condition in a solid can
be expressed mathematically as: T (r,t)‘t_o = T(r,()) = To (r) (9.16)

where the temperature field T(r) is a specified function of the spatial coordinates r only

In many practical applications, the initial temperature distribution T,(r) in Equation (9.16) can be
assigned with a constant value such as room temperature at 20°C for a uniform temperature
condition in the solid. 15



9.4.6 Boundary conditions:

Specific boundary conditions are required in obtaining complete solutions in heat
transfer analyses using the general heat conduction equation in (9.15). Four types of
boundary conditions are available for this purposes.as will be presented below.

1) Prescribed surface temperature, T(t):

This type of boundary condition is used to have the temperature at the surface of the solid
structure measured by either attaching thermocouples to the structure surface or by some
non-contact methods such as infrared thermal imaging scanning camera. The mathematical
expression for this case takes the form:

T(rt),., =T.0) 172
where r, is the coordinates of the boundary surface where temperature are specified to be T(t)

2) Prescribed heat flux boundary condition, q(t):
Many structures have their surfaces exposed to a heat source or a heat sink, in such situations,

heat is being supplied to or removed from the solids through its outside surface. The
mathematical translation of the heat flux to or from a solid surface can be readily carried out by
using the Fourier law of heat conduction defined in Equation (7.25). The mathematical formulation
of the heat flux across a solid boundary surface can be expressed as:

oT(r,t) _g,(r,t) (9.17b)
k
o . . .
where k is the thermal conductivity of the solid material. The symbol - is the differentiation along

the outward-drawn normal to the boundary surface S,. We may express Equation (9.17b) for the
boundaries that are impermeable to heat flow, or a boundary that is thermally insulated as:

o) _, (9.17¢)

on

r=r,

' 16



9.4.6 Boundary conditions — cont'd:

3) Convective boundary conditions:

. Boundary surface (1) This type of boundary condition applies when the solid
,, Boundary structure is either in contact with a fluid, or is submerged
in fluids, as often happen in reality.

Solid surface
Temperature
TS = T(rslt)

FLUID

Bulk fluid temperature: T;

Heat transfer coefficient, h

g Let us derive the mathematical expressions of the boundary conditions
rt

+n by referring to the sketch in Figure 9.5.

We first recognize that there is a physical “barrier” that retards free heat
flow between the solid surface and its contacted fluid. This barrier is

/ often recognized as the “boundary layer that can be characterized by a “film
resistance that is equal to “1/h” with h being the film coefficient as defined in
Fiqure 9.5 Equation (7.29) in Section 7.5.5. Physically it means that the temperature of

the solid surface T, # the temperature of the surrounding bulk fluid T;.

The following two (2) mathematical expressions are derived to represent the above physical phenomenon:

From the fact that no heat is being stored at the interface of the solid and fluid, which leads to the following
Equality:

Heat flow in solid | =| Heatflow in fluid | —k@ - h[T(rs,t)—Tf] or in the form:
n r=r
oT (r,t) h h
; +—T(rt - T 9.17d
an - k (r Xr:rs k f ( )

The above equation involves heat flows in solids by conduction and heat flows in fluids by convection.
It is often referred to be the “mixed boundary conditions.” This expression of boundary condition
actually could be used for problems involving prescribed surface temperatures in Equation (9.17a) with

h—<, We may also prove that letting h = 0 in Equation (9.17d) will lead to a thermally insulated
boundary condition with g, = 0 in Equation (9.17b). 17



I

Example 9.3 (p.295) o !
: .. : I

Show the appropriate boundary conditions of a long thick C:icr" steam I
wall pipe containing hot steam flow inside the pipe at a . i
bulk temperature T, with heat transfer coefficient h,. }< I
|

The outside wall of the pipe is in contact with cold air at a 5 |
temperature of T, and with a heat transfer coefficient h,, <5 ;
as illustrated in Figure 9.6. h 5

Figure 9.6

Solution

A common but logical hypothesize made in this type of engineering analysis is that heat
will flow is primarily along the positive radial direction (r) in a long pipe such as in this
example because of the greater temperature gradient cross the pipe wall than that along
the length. So, the radial direction is the principal direction of heat flow. Consequently, we
will account for two boundary surfaces in this analysis, i.e., at the inner surface with r = a
and the outside surface at r=b.

Since heat transfer coefficients of both the steam inside the pipe (h,) and the heat transfer
coefficient of the air outside the pipe (h,) are given, we may use Equation (9.17d) to establish the
convective boundary conditions at both sides of the pipe wall as follows:

(a) At inner boundary with r = a:

de (r) _ET (r = ETs
ar |,_, o K
(b) At the outside boundary with r = b: aT (r) h, h,
k—/ +—T(rX I _Ta
dr . k r=b k 18

in which k = thermal conductivity of the pipe material



Example 9.4 (p.296) T

indicated in Figure 9.7.

I

Ty K |

Find the temperature distribution in a long thick wall pipe ~al Hot I
with inner and outside radii a and b respectively by using Steam:

the three types of boundary conditions in Equations Cool air: | T(r) T.h, |

(9.17a,b,d). T. h, o - |

Conditions for establishing the mathematical expressions |

for these boundary conditions with hot steam inside the 3 '

pipe and the cool surrounding air outside the pipe are ) < b i

< |

Fiqure 9.7

Solution

We adopt the same principal as described in the last example that the shorter heat flow path
along the radial direction of the pipe enables us to assume the principal temperature variation
in the pipe wall is with the radius variable (r). Consequently, we may assume that the
temperature function that we desire in this analysis is T(r) only.

Thus, by select the relevant terms in the PDE in (9.14b), we will have the relevant differential

equation of the form:
dzT(r)+ldT(r) 0
> r dr (@)

Solution of the differential equation in (a) may be obtained by either using Equation (8.6), or by
re-arranging the terms that fit the following form of:

i{rdT_(f)} o (b)

dr dr

from which we get the solution T(r) by integrating Equation (b) twice with respect to variable r,
leading to the form: T(r) =, fn(r)+ c, (c)

where ¢, and ¢, are two arbitrary constants 19



Example 9.4-Contd

Par I

. . Ty K |

We have derived the general solution of the temperature ~N Hot i
across the pipe wall to be: Steam: i
Cool air: | T(r T, hy ]

T(r) =c, /n(r)+c, (©) T h. N ) |

We will determine the two arbitrary constants |
c, and c, using the 3 different sets of boundary |
conditions presented in Section 9.4.6 as follows: 5 2 |
< |

(A) With prescribed boundary conditions in Equation (9.17a):

With the given conditions of:T, to be the temperature at the inner surface with T(a) = T,, and T(b) =
T, at the outside surface of the pipe, we will determine the two constants in Equation (c) to be:

T,-T, T,-T
= ab and ¢, =T,--° ab /(a) which leads to the following complete solution:
En(j Kn(j

il

b
(B) With prescribed heat flux q, across the inner surface and T, at the outside surface:
. dT(r) q
t rface: Rl WV B
at inner surface ar | " (e)
at outside surface: T(r)_, =T0)=T, (f)

We may determine the constants c, and c, in Equation (c) to be: ¢, = _% and ¢, =T, + aEa n(b)

(9)

which leads to the comolete solution of Equation (?% t5> b@l_: aq ) (rj
r)= b g n —

K

20



I
Example 9.4-Contd T g i
P b\\ Hot |
Steam: -
(c) With mixed boundary conditions Cool air: | T(n T h, |
in Equation (9.17d): T, h., . I
|
The 2 appropriate boundary conditions are: 3 !
< 1
b L
at inner pipe surface: arir) —ET(rX = &Ts (h)y I< |
dr |, K S ¢ :
SN, . dT(r))  h h .
at outside pipe surface: ——~ 2T =27
PP ar 1, e e =T 0
Substitute (h) and (j) into Equation (c), we will get:
h.h (T, -T —
“ Tk Lha( L) b and G =T~ hik]\a(Ta R b (hkb Mn(b)j
e — +hsha£n(j a+-—+hh Kn(j a
a b a a b % \a

The temperature distribution in the pipe wall T(r) may be obtained by substituting the
constants ¢, and c, in the above expressions into the solution in Equation (c).

21



o5 Solution of Partial Differential Equations for Transient
Heat Conduction Analysis (p.29s)

The partial differential equation presented below and also in in Equation (9.15) is
valid for the general case of heat conduction in solids includes transient cases in
which the induced temperature field T(r,t) varies with time t.

VzT(r,t)_FM — lM (915)
a ot

where r = the position vector and t = time. Q(r,t)= the heat generation by the material

in unit volume and time, k, a = thermal conductivity and thermal diffusivity of the material
respectively, with k to be a measure of how well material can conduct heat and the latter
a is a measure of how fast the material can conduct heat.

The position vector r may be in rectangular coordinates: (x,y,z) or in cylindrical polar
coordinate system (r,08,z).

The complexity in transient heat conduction analysis is that not only we need to specify the
position (r) where the temperature of the solid is accounted for, but we will also need to
specify the time t at which the temperature of the solid occurs. We thus need to specify both
theboundary and initial conditions such as described in Section 9.4.6 for complete solution of
the temperature filed in the solid.

In this section, we will demonstrate how the separation of variables technique described
in Section 9.3 will be used to solve this type of problems in both rectangular and

cylindrical polar coordinate systems. 9



9.5.1 Transient heat conduction analysis in rectangular coordinate system (p.298)
The case that we will present here involves a large flat slab

made of a material with thermal conductivity k. Te(t50) ~ s T, (t>0)
The slab has a thickness L as illustrated in Figure 9.8. It T(x,t/
has an initial temperature distribution that can be described L g > X

its faces are maintained at temperature T; at time t > 0.

op . oV ‘ >
by a specified function of f(x), and the temperatures of both ///
L

We need to determine the temperature variation in the slab
with time t, i.e. T(x,t) in the figure after the temperature of X
both faces of the slab are maintained at T..

The physical situation of this example is that the flat slab has an initial temperature
variation through its thickness fits a function T(x.0) = f(x) —a given temperature dis-
tribution. Both its surfaces are maintained at a constant temperature T; at time t >0*
for t > 0. One may imagine that the temperature in the slab will continuously varying
with time t, until the temperature in the entire slab reaches a uniform temperature T.
The purpose of our subsequent analysis, however, is to find the transient temperature
T(x,t) in the slab before it reaches the ultimate uniform temperature of T..

We may also recognize a fact that the geometry of a large flat slab is a good approximation
for the situation of a circular cylinder with large diameter with a large ratio of D/d in which D
is the nominal diameter of the hollow cylinder and d is the thickness of the wall of the
hollow cylinders. The solution obtained from this analysis of flat slab may thus be used for
large hollow cylinders such as pressure vessels of large diameters such as for nuclear
reactor vessels in nuclear power plants.

23



9.5.1 Transient heat conduction analysis in rectangular coordinate system —contd (p.299)

The governing differential equation for the aforementioned physical situation may be
deduced from heat conduction equations in Equations (9.14a) and (9.15) with the
thermal conductivity of the slab material k, = k, = k,=k for being an isotropic material.
The term Q(x,y,z,t) in Equation (9.14a) and Q(r,t) in Equation (9.15) are deleted
because the slab does not generate heat by itself. Consequently, the equation that
matches the the present physical situation becomes:

O'T(xt) _ 12T(xt) (9.18)
OX’ a o

T(xt)_, =T(x0)= f(x)
and the following boundary conditions (BC):
(xt) _, =T(Ot)=T, t>0 (9.19b)

T(x,t){xzL =T(L,t)=T, t>0 (9.19¢)

We may solve the partial differential equation in Equation (9.18) by using Laplace transform
method described in Section 6.5.2 (p. 180) or 9.3 (p.287) by transforming the variable “t” to
parametric domain , or use the separation of variables technique as described in Section 9.3.1.
However, we may circumvent our effort in the solution of Equation (9.18) by using the
separation of variables method with converting the non-homogeneous BCs in Equation
(9.19b,c) to homogeneous BCs by the following substitution of u(x,t) to T(x,t):

u(x,t) = T(x,t) - T; (9.20)

With the initial condition (IC): (9.19a)
19a
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9.5.1 Transient heat conduction analysis in rectangular coordinate system —contd

The above relation in Equation (9.20) will result in the revised PDEs in Equation (9.18)
into the following form:

o’u(x,t) 1 du(x,t)

— (9.21)
OX’ a ot
with the revised initial condition:
u(x,t)_, =u(x,0)= f(x)-T, (@)
and the 2 converted boundary conditions:
u(x,t] _ =ulo,t)=T(xt) _ -T, =T, -T, =0 (b)
uxt) , =u(Lt)=T(xt) -T, =T,-T, =0 (c)

We are now ready to solve the equation in (9.21) and the associate initial and boundary
conditions in Equations (a,b,c) using the separation of variables method as presented below:
We will proceed by letting:

u(x,t) = X(x)t(t) (9.22)

Substituting the relationship in Equation (9.22) into Equation (9.21) will lead to the following
expressions:

X)) _ 19[X)T(D] eaqds to: 7(t) LXX = Ly(x)21®

== and this equality
012 " ot 28x2 a ot
can now be expressed in ordinary derivatives. 7(r) £ =1y O iy \which the partial
dx? @ dt

derivatives on either sides are obtained.
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9.5.1 Transient heat conduction analysis in rectangular coordinate system —contd
The expression that we just derived, as shown below

d?x(x) _ 1 dr(t)
(0) oz X

can be expressed in a slight different form after re-arranging the terms to another equality:
1 d*X(x) 1 1 dz(t)
X(x) dx*  art) dt

The above expression shows a very interesting but unique feature:

The LHS of the above expression involves the variable x only =
The RHS of the same expression involves the variable t only

The ONLY condition such an equality can exist is to have both sides of the expression
to equal a CONSTANT!! (we may prove that the constant must be a NEGATIVE constant).

Consequently, we may have the following valid equality:

1 d?X(x) —1 1 di(®) _ '32
X(x) dx?2  azt) dt (9.23)

where (3 is the “separation constant” and it can be either positive or negative constant.
Equation (9.23) results in the following 2 separate ordinary differential equations:

XX, pyx)=0  (924)

1 d2X(x)_lLdr(t)_ —ﬂ2< dx?
X(x) dx*  art) d dz'_(t)

+af’z(t) =0 (9.25) .



9.5.1 Transient heat conduction analysis in rectangular coordinate system —contd

XX, poyx)=0  (924)

L dX(x) 1 1 delt) < dx?
X(x) dx*  azt) d dz'(t)

T+ozﬁzr(t) =0 (9.25)
The solution X(x) and 1(t) in respective Equations (9.24) and (9.25) requires the specific

conditions for both these equations. Equation (9.22) is used in conjunction with those
given initial and boundary conditions in Equations (a,b,c) will get us the following
required equivalent conditions:

X(0)=0and X(L)=0 (e1, e2)
for Equation (9.24).

Solution X(x) in Equation (9.24) is readily found from Section 8.2 with the form:

X(x) = A cosBx + B sinpx (f)
The arbitrary constant A in Equation (f) can be determined by Equation (e1) to be zero, which
leaves BsinBx=0. the use of the given condition in Equation (e2) leads to BsinL=0, which
leads to either B=0 or sinBL=0; Since B#0 (to avoid a non-trivial solution of X(x)=0), the only
choice for us is to let sinfL=0 (9.26)

We will quickly realize that there are multiple values of the separation constant (3 that satisfy
Equation (9.26). These are: B = nmT, withn=1,23,.......... Alternatively, we may express the
separation constant 8 in the following form: 8, =% (" =123 ) (9.27)
Consequently, the function X(X) X (x) = B, sin ™ + B, sin 2% + B,sin "% 4 ... (9.28)

in Equation (9.24) takes the form: L L '

:ZaninnTﬂX (N=1,2,3 o )
27



9.5.1 Transient heat conduction analysis in rectangular coordinate system —contd

We are now ready to solve the other function =(t)in Equation (9.25)by the
follwoing steps

dg_Et) + aﬂzr(t) =0 (9.25)
Solution of this first order differential equation is:
o2
r(t) =C, e " (9.29)
where C, withn=1, 2, 3,...... are multi-valued integration constants corresponding to the

multivalued B, in the solution.

The general solution of Equation (9.21) can thus be obtained by substituting the solutions
X(x) in Equation (9.28) and 7(t) in Equation (9.29) into Equation (9.22) to give:

u(x,t) = i:Canefaﬂbt sin% =S b, e ! sin% (9.30)
n=1 n=1

The multi-valued constant coefficients b, =C B, in Equation (9.30) may be determined

by the last available initial condition in Equation (a) in which u(x,0) = f(x)-Ts.

Consequently, we have: o
u(x0) = F(x)-T, = 3b, sin% (9.31)
n=l1

where f(x) and T; are the given initial temperature distribution in the slab and the contacting bulk
fluid temperature respectively.
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9.5.1 Transient heat conduction analysis in rectangular coordinate system —contd
Determination of the multi-valued constant coefficients b, in Equation (9.30) on P.302:

We will use the “orthogonality property of integrals of trigonometry functions” for the above task.

The two applicable properties are presented below:

0 if
Ip51nn—ﬂxsinm—ﬂxdx = I m=n (9.32)
0 p p p/2 if m=n
Following steps are taken in determining the coefficient b, with n = 1,2,3,...., in Equation (9.31):
nzx
Step 1: Multiply both side of Equation (9.26) with function Sln—L
. nax . NaX & . nax = . N nzx
(smTJ[f (x)-T, ] = (smTj;bn smT = ;bn (smT)smT (g)

Step 2: Integrate both sides of Equation (g) with integration limits of (O,L):

[ s )= [ 5o sn " fin "= 32 w0 o)

Step 3: Make use of the orthogonality of the harmonious functions like sine and cosine with the
relationships in Equation (9.32): IL(S“‘ j[f T, Jox = b (L) leading to:
n 2 -

= LT o (9.33)
We thus have the solution of Equation (9.21) to be: u(x.t) {I [ (x)-T ]sm—dX} ""‘”s1nnT7ZX

The solution of T(x,t) in Equation (9.18) for the temperature dlstrlbutlon in the slab can thus be
obtained by the relationship expressed in Equation (9.20) to take the form:

T(xt)=T, + = {J. [f -T ]sm—dx}e”ﬁt 1nnT7ZX (9.34)

It will not be hard for us to envisage that T(x,°°)—>Tf|n Equation (9.34) — a solution in reality.
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9.52 Transient heat conduction analysis in cylindrical polar coordinate system (p.303)
There are many mechanical engineering equipment having ‘A

geometry that can be better defined by cylindrical polar

coordinates (r,0,z) such as illustrated in the figure to the right: ,

Cylinders, pipes, wheels, disks, etc. all fit to this kind of geometry such )

asshown in Figure 9.9.. - g

— r

It is desirable to know how to handle heat conduction in solids of these t

geometry. | x Y
)

i creumference VV€ Will present the case of solving heat conduction problem using

k) |o temperature: the separation variable technique in a solid cylinder with radius a

| 20 a5 shown in Figure 9.9.

o> r
! The cylinder is initially with a given temperature distribution of f(r).
Ii It is submerged in a fluid with bulk fluid temperature T..at time t+0*.
Figure 9.9

The situation in real application is like having a hot round solid cylinder initially with a
temperature variation from hot center cooling down towards its circumference surface
described by function f(r). It is a classical case of “quenching” operation in a metal forming operation.

The surrounding contacting liquid at a cooler temperature T; is vigorously agitated so that the heat
transfer coefficient h of the fluid at the contact surface may be treated as “~” in Equation (9.17d) on

p, 295, leading to the boundary temperature of the solid cylinder to be T;, as stated in the problem. The
temperature field in the solid cylinder may be represented by the function T(r,t), in which r = radial

coordinate and t is the time into the heat conduction in the solid.

30



9.52 Transient heat conduction analysis in cylindrical polar coordinate system — Contd (p.303)

The applicable PDE for the current application may be deduced from Equation (9.14b) by dropping
the second and other terms in the right-hand-side of that equation, resulting in:

1aT(r,t) aZT(r,t)+ 10T(r,t)
y a ot o r or (9.39)
oc Is the thermal diffusivity of the cylinder material with p and c being the mass density
and specific heat of the cylinder material respectively.

where %=

a
We will have the given initial condition: T(r t)1t:0= T(r,0)= f(r) @)
and boundary conditions: r t)( = T a t =T, t>0 (b1)

The other “inexplicit” boundary condition for solid cylinders or disks is that the temperature at
the center of the cylinder or disk must be a finite value at all times. Conversely this implicit
boundary condition for the current case meant to be:

T(r,t),_, =T(O,t)= 0 or T(0,t)= finite value (b2)
with the PDE in (9.35) and the initial and boundary conditions specified in Equations (a), (b1)
and (b2) as specified above, we may proceed to solve for the transient temperature distribution

T(r,t) in Equation (9.35) by using the separation of variables technique similar to what we did
in the proceeding Section 9.5.1.

Again, for the same reason as in the previous case, we will first convert the non-homogeneous
boundary condition in Equation (b1) to the form of homogeneous condition by letting:

u(r.t) = T(rt) -T, (c)
Accordingly, Equation (9.35) and the original initial and boundary conditions will have the forms:
lau(r,t) _ azu(r,t)+16u(r,t) (9.36)

a ot or’ r or
with u(r,t),_, =u(r,0)= f(r)-T, for t=0 (d)
and u(r,t) _ =u(@t)=0 for t>0 (e)
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We thus have the PDE: Tou(rt) _ d'u(r,t)  1au(rt) (9.36)
a ot or? r o or
d
with conditions: u(r.t),, = u(r.0)= f(r)-T, for t=0 9)
u(r,t) _ =u(at)=0 for t>0 (e)

We realize that there are two independent variables in the function u(r,t) in Equation (9.36), so, we will
use the following formula to separate the two variables in the function u(r,t) by letting:

u(rt) = R(Nz(t) (9.37)
Upon substituting the above relation in Equation (9.37) into Equation (9.36) will result in the following
Expressions::

1AR()e()] _ *[R(r)e()] | 1 A[R(r)e(t)]

a ot or® r or
R(r)oz(t) _ T(t\azR(r) .\ z(t) aR(r) (f)
a ot 7 or? r or

Equation (f) offers the legitimacy of converting the partial derivatives of R(r) and 1(t) to ordinary
derivatives as shown below:

1 de(t) 1 [d*R(r) L dR(r) (9)
ar(t) dt  R(r)] dr* r dr
We notice that the LHS of Equation (g) involves variable t only whereas the RHS of the same expression

involve the other variable r only. The only way that such equality can exist is for both sides in Equation (g)
to be equal to a same negative separation constant 3. We thus have the following relationship:

1 deft) 1 {dzR(r)JrldR(r)}

ar(t) dt  R(r)] dr* r dr

= (9.38)
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9.5.2 Transient heat conduction analysis in cylindrical polar coordinate system — contd

Solution of partial differential equation: L &u(r.t) _ d*u(r,t) 1 au(r,t) (9.36)
a ot or’ r o or
. iy _ _ _ (d)
with conditions:  u(r,t)_, = u(r,0)= f(r)-T, for 1=0
u(r,t) _ =u(at)=0 for t>0 (e)

We can thus split Equation (9.38) into the following two separate ordinary differential equations:

dzlt
I deft)_ 1 [d°R(r) LdR()|_ _ 5 %mﬂzr(t) =0 (9.39)
ar(t) dt  R(r)| dr* r dr )
d-“R(r dR(r
r’ S ) . OR( )+ﬂ2r2R(r) =0 (940
dr dr
The solution of Equation (9.39) is identical to Equation (9.29) in the form:
7(t) = c,e” (h)
where the constant coefficients c, with n = 1, 2, 3,..... is a multivalued integration constants.

We notice that Equation (9.40) is special case of the Bessel equation in Equation (2.27) on p.56 with
order n = 0. Consequently, the solution of Equation (9.40) can be expressed by the Bessel functions given
in Equation (2.28) on the same page with n = 0 in the following form:

R(r) = A Jy(Br) + B Y,,(Br) (9.41)
where the constant coefficients A and B will be determined by the boundary conditions stipulated in
Equations (d) and (e).
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9.5.2 Transient heat conduction analysis in cylindrical polar coordinate system — contd

Solution of partial differential equation: L &u(r.t) _ d*u(r,t) 1 au(r,t) (9.36)
a ot or’ r o or
d
with conditions:  u(r,t)_, = u(r.0)= f(r)-T, for t=0 9)
u(r,t) _ =u(at)=0 for t>0 (e)
W-e_h;;e—s_oR/; ;h—e_d&f;r—e;ti_al equation in Equation (9.40) to be the expression given in Equation (9.41):
d’R(r) dRr
2 dr§)+r R(>+-,6’2r2R(r)=O (9.40)
r (9.41)

R(r) = A Jo(Pr) + B Y, (Br)

where A and B are two arbitrary constants to be determined by the two boundary conditions applicable

in this case are: R(0) for u(0,t) and thus T(0,t). For the condition R(0), we will have, from Equation (h)

in the form: R(0)=AJ,(0)+BY,(0), we realize that J,(0) = 1.0 from Figure 2.45 (p.56), but Y,(0)—-= as
indicated in the same figure. The latter indicates that R(0), therefore T(0) —-«~ (an unbounded temperature
at the center of the solid cylinder, which is obviously not a realistic solution. The only way that we may avoid
this unrealistic situation is to let the constant B = 0.

Consequently, we have the solution in Equation (h) to take the form: R(r) = A J,(Br) ()

The boundary condition in Equation (e) will lead to the expression: R(a) =A Jy(Ba) = 0, which requires either:
A =0, or Jy(Ba) = 0. Since the coefficient B in Equation (h) is already set to be zero (0), to let A=0 will mean
the function R(r)=0, an unacceptable trivial solution for the temperature T(r,t). We are thus left with the only
option to have:

Jo(Pa) =0 (9.42)

Equation (9.42) offers the values of the separation constant 3 in Equation (9.38) because J,(x) = 0 is an
equation that has multiple roots (see Figure 2.45(a) on p.56 like sin(BL) = 0 in Equation (9.26) on p.301.
The roots of the equation Jy(Ba) = 0 in Equation (9.42) may be found either from the Figure 2.45(a) on

p.56, or from math handbooks. 34



9.5.2 Transient heat conduction analysis in cylindrical polar coordinate system — contd

l@u(r,t) _ 82u(r,t)+lau(r,t) (9.36)
a ot o’ r or
u(r,t),_, =u(r,0)= f(r)-T, for t=0 (d)
u(r,t) _ =u(at)=0 for t>0 (e)

We have set the solution u(x,t) of Eqution (9.36) in the form of u(r,t) = R(r)r(¢)in Equation (9.17, and we
have solved RN =AJy(Bn in Equation (j), and z(r) = ¢ e “*' in Equation (h). We thus have the solution u(r,t)
in the following form :

u(rt) = AC,e~@Fit Jo(Br)

Since both A and C, are constants, and the latter C, is a multivalued constants withn =1,2,3,....,
we may express the complete solution u(r,t) in the form:

u(r,t) = 2 ob e 3, (B,r) (9:44)
n=1
where the multi-valued constant b, may be determined by the conditions in Equations (d) and (e).

We thus have the following expression after apply the initial condition in Equation (d):
u(r.0)= f(r)-T, = > b, I,(B,r) = b3, (Br)+0,3,(Br)+ 0,3 (Bsr ) +..ccc.. (9.45)
n=1
where f(r)-T;in Equation (d) are given conditions with the PDE in Equation (9.35), and b, in Equation (9,45)
may be determined by following a similar procedure as outlined in Section 9.5.1 using the “orthogonality

properties” of trigonometric functions in Equation (9.32) on p.302. However, we will use the Fourier-Bessel
relation in determining the coefficients b,, in Equation (9.45) in the present case.
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9.5.2 Transient heat conduction analysis in cylindrical polar coordinate system — contd

l@u(r,t) _ 82u(r,t)+lau(r,t) (9.36)
a ot o’ r or
u(r,t),_, =u(r,0)= f(r)-T, for t=0 (d)
u(r,t) _ =u(at)=0 for t>0 (e)

The Fourier-Bessel relation has the form (p.307):
0 if B, #p, for different arguments in the Bessel functions in the integral

Jo 3y (Bar 3, (B, ) :{Jj r[JO(ﬁnr)]zdr if B, =/, forsame arguments in the Bessel functions in the integral

We will multiply both sides of Equation (9.45) by the following series of Bessel functions:

[r3,(Br)+ 13, (Byr)+ 13, (Bsr)+ ... | as shown in the following expression:
[rd,(Br)+rd,(B,r)+1rd,(Br)+........... 1f(r)-T,]
= [r3,(Br)+13,(B,r)+ I (Br)+....... [b, 3, (Bir)+10,3, (B )+ 0,3 o (Bl )+ ]
and the expansion of both sides of the above expression will result in:
BT J= 1,(8,0B3, (A0 + 0.3, (r) + 5.3, (B.)+ .. )

Integrating both sides of Equation (k) with respect to variable r will result in:

joa r3, (B, r)f(r)-T ]dr:.[a rd, (B.r b3, (B r)+0,d,(8,r)+bd,(Br)+.......... lJdr forn=1,23,.......

- j rb,[J,(8,r) dr+j rb,[3,(8,0)3,(8,1)+ 3, (B,1)d o (Bsr )+ JAT )
The Fourier-Bessel relation enables us to eliminate the 2"d part of the Bessel functions, and result in:
'foarJo(,Bnr)[f(r)—Tf Jar = an':r[Jo(ﬁnr 2dr (m)
We may thus obtain the multi-valued coefficient b, to be: P: = W] r[£(r)-T, Jo,(B,r)dr (9.46)
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9.5.2 Transient heat conduction analysis in cylindrical polar coordinate system — End

lau(rt) 82u(r,t)+lau(r,t)

a ot ot r o or
u(r,t),_, =u(r,0)= f(r)-T, for t=0
u(r,t) _ =u(at)=0 for t>0

(9.36)

The solution of u(r,t) in Equation (9.36) thus has the form:
u(r,t) = X b,e " 3,(B,r)
n=1

where the coefficients b, are obtained fro the integral in Equation (9.46):

2 a
b, = WL e[f(r)-T, 3,(8,r)dr

We may obtain the transient temperature distribution in the cylinder T(r,t) by the
relation derived from Equation (c) as: T(r,t) = T;+u(r,t).

We thus have the solution of the temperature distribution in the cylinder to be:

T(r,t) =T, + an e‘“ﬂﬁtJO(,Bnr) (9.47)
n=1

where the multi-valued coefficients are computed from Equation (9.46)

We notice the appearances of Bessel functions in the solution of this problem. It is normal
to see such appearances of Bessel functions in solid geometry involving circular geometry,

Circumference
e temperature:
T; (t>0)

o——>"

such as cylinders, disks, and even solids of spherical geometry.
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9.6 Solution of Partial Differential Equations for Steady-State Heat Conduction Analysis

Often, we are required to find the temperature distributions in solid machine structures with
stable heat flow patterns, which makes the temperature distributions in the solids
independent of time variation, i.e., the steady state heat conduction. Following are
examples on heat flow in the machines in steady-state conditions:

Internal Combustion Engines / s

Air

EXHAUST

S =S _<
i iﬂm
Tubular heat exchanger: Wi B e AT
ger. || T
To sjector : T Combustion Chambers Turblne
Wister outlet  Steam WECLLIM =y stem Cold Section B Hot Section
Flanges .
] Baffie  BaffleTT > Tubes with fins o
1 IC chip with heat spreader:
e Lid (Heat
L. -
: .I:!r CDSO-IE: _ Spreader)

- eat Sink ___|

.-'_3"-. i oW WM WH NN NN N 1* Level Interconnect:

l,-—Zl-- Tim2 = = === c4 BLII'I'IpS‘

.-—3'-- Substrate
% t Elat‘fle 4 \ = 2nd Level Interconnect

FII:aDnnge;d Tubeshest TUbeshest Chip Underfill PCB
plate *Flip Chip Seclder bumps

\Water iniet Condensate C4 = Controlled Collapse Chip Connection

**TIM = Thermal Interface Material
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9.6 Partial Differential Equations for Steady-State Heat Conduction Analysis (p.308)

Mathematical representation of multi-dimensional heat conduction in solids is available by
using the partial differential equation without the term related to time variable t. The PDE in
Equation (9.15) on p.293 is reduced to the following form

va(r)+¥ _0 (9.48)

where the position vector r represents (x,y,z) in rectangular coordinate system, or (r,0,z)
in cylindrical polar coordinate system.

Equation (9.48) is further reduced to the “Laplace equations” in the following form if no
heat is generated by the solid:

VT(r)=0 (9.49)

We will demonstrate the solution of PDEs for steady-state heat conductions in
multi-dimensional solid structure components using separation variables technique

in both rectangular and cylindrical polar coordinate systems in the subsequent
presentations.
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9.6.1 Steady-State Heat Conduction Analysis in Rectangular Coordinate System (p.308)

We will demonstrate the use of the Laplace equation in
Equation (9.49) for the temperature distribution in a square

: o L Y A
plate with temperature in its three edges maintained at
constant temperatures at 0°C and the other edge at 100°C,
as illustrated in Figure 9.10.

Solid plate structure components are common in the heat
spreaders in internal combustion engines,

tubular heat exchanges, and heat spreaders for 0°C T(x,y) 0°C
microchips, as illustrated in the last slide.

100 cm

In the present case, heat flows from the heat source at the
top face with higher temperature towards the heat sinks in o

. 0°C
the other edges at lower temperatures. There is no heat ,
flows across the thickness of the plate with an assumption Figure 9.10
that both the plan faces of the plate is thermally insulated.
The induced temperature field thus covers over the plane area of the plate, and the temperature

distribution in the plane of the plate is represented by the function T(x,y).

2 2

0T(xy)  OTxy) (9.50)
We have the applicable PDE X
expressed in Equation (9.50), with  0< x<100 and 0<y <100
and specified boundary T (x, y)(xzo =T(0,y)=0 (a1)
conditions in Equations (a1), ~ ~
(a2), (a3) and (a4). 706 Y ) =T100,y) = 0 (a2)

T(xy) , =T(x0)=0 (a3)

T(%Y), 0 = T(x100) =100 40



9.6.1 Steady-State Heat Conduction Analysis in Rectangular Coordinate System — Cont'd
Solution of Partial Differential Equation using Separation of Variables Method (p.309):

2 2
0 T()i’ y)+ 0 T()i’ y) =0 (9_50)
OX oy
0< x<100 and 0<y<100
Boundary conditions:  T(x,y) _, =T(0,y)=0 (a1)
T(X’y)|x=1oo :T(IOO,y) =0 (82)
T(xy),_, =T(x0)=0 (a3)

T(%, )00 = T(x100) = 100 (a4)

There are two variables x and y in the solution of temperature function T(x,y), we will thus let:
T(x,y) = X(¥) Y(y) (b)
in which function X(x) involves only variable x, and function Y(y) involves variable y only.

Substitute Equation (b) into Equation (9.50), and after re-arranging terms, yields the following
expression: 1odX(x) 1 dY(y)

X(x) dx*  Y(y) dy?
We will use the same argument as we did in Sections 9.5.1 and 9.5.2 that the only way the above
equality can exist is to have both sides of the equality to be equal to a negative separation constant.

We will thus have the following equality:
1 d?X(x) 1 d*Y(y) )
= — = — C
X0 o¢ o) o P ©)
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9.6.1 Steady-State Heat Conduction Analysis in Rectangular Coordinate System — Cont'd
Solution of PDE in Equation (9.50) using Separation of Variables Method-cContd:

Equation (c) leads to the split of the PDE in Equation (9.50) into two ordinary differential equations
(ODEs) after the separation of the variables x and y as shown below:

d*X(x)

The original PDE in . +B°X(x) =0 (d)

Equation (9.50): X B (1)
’T(x,y) &°T(x,y) X(0)=0

PW + Ve =0 X(100)=0 (2)

gy - o ©

Y(0)=0 (f3)

Both Equations (d) and (e) are homogeneous 2" order differential equations with the solutions methods
available in Section 8.2. We will shown the solutions of these two equations in the following forms:

Solution of Equation (d): X (x) = Acos B + Bsin A (9)
Solution of Equation (e): Y(y) = C coshBy + D sinhfy (k)

We may obtain the expression for the multi-valued separation constant 3 to be the solution

of the characteristic equation of sin(1008) = 0, and the constant coefficient A = 0 upon substituting
The boundary conditions in Equations (f1) and (f2) into Equation (g). We have thus obtained

the multi-valued separation constants B, = (n1)/L with L=100 and n = 1,2,3,....,n from the roots of
the equation sin(100B) = 0. We can thus express the function as:

X(x) = B, sinp,x ()

in which B, with n = 1,2,3,....,n are the multi-valued constant coefficients to be determined later.
42



9.6.1 Steady-State Heat Conduction Analysis in Rectangular Coordinate System — Cont'd
Solution of Partial Differential Equation (9.50) using Separation of Variables Method-cContd:

IX g =0 @

i ; X(0)=0 (1)
0 Ta>(<)§ y) n 0 ;E; y) —=0 X(100) =0 (f2)
d;\;gy) -A(y)=0 (©)

Y(0)=0 (3)

Next, we will solve Equation (e), with a solution (p.310):
Y(y) = C coshBy + D sinhfy (k)

The boundary condition in Equation (f3) would make the constant coefficient C = 0. Consequently,
we will have the function Y(y) to take the form:

Y(y)=D,sinhf,y  withn=1,2.3,...n (m)
We have obtain the solution T(x,y) of Equation (9.50) after substituting the expressions of X(x) in
Equation (j) and Y(y) in Equation (m) into Equation (b) and result in:

T X = B - nh—
(oy) = 2 X () = 2.8, ”(Sm ooxj( 100 yj

%b{sm%x)( 100 ) "
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9.6.1 Steady-State Heat Conduction Analysis in Rectangular Coordinate System — Cont'd

FTxy), Tlxy) 050 ' _100em
x 5')/2 100°C
0<x<100 and 0<y<100 7y
T(xy),, =T(0,y)=0 (a1) i
T(x,y)|leoo =T(100,y) =0 (32) 0°C T(X,y) 0°C é
T(xy) , =T(x0)=0 (a3)
| Y > X
T(%Y), 0 = T(x100) = 100 (@) 0 —
N S nz nz
T = X = B D mn— inh—
(X, Y) nZ—1: (x){(y) nz_l: . n(smloo X)(sm 100 yj
c . Nz .. Nz
- 2 bn(smﬁx)tsmhﬁ yj (n)

The unknown coefficients b, in Equation (m) may be determined by using the remaining boundary
condition in Equation (a4) that T(x,100) = 100, which leads to:

T(x,100) =100 = ibn (Sin% xj(sinhmz) or 100 = i(bn sinhnz)sinl%x (p)
n=l1

n=l1

By following the same procedure in in using the orthogonality of trigonometric functions in Section 9.5.1,
on p.298, We will determine the constants b, in Equation (p) to be:

3 200(cosnz —1)

b, = . withn=12,3,....ccccourrrrrrnn. (CI)
Nz sinhnz
Leading to the solution: 200 (I—COSTVZ') . hr .. Nrxw
TIX,Y)= sin X sinh—
( y) T nzz; n sinhnz 100 100y (9.51)
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9.6.2 Steady-State Heat Conduction Analysis in Cylindrical Polar Coordinate System (p.311)

We will explore how the separation of variables technique may be used in steady-state
heat conduction analysis in cylindrical polar coordinate system by tlhis case illustration.

Top end :
The case we have here involves a solid cylinder Temperature: 24
with radius a and length L with temperature at "0 N\ —
the circumference and the bottom end KN Circumference
maintained at 0°C and the temperature at the /" temperature: 0°C
top surface is subjected to a temperature L Tr2)
distribution that fits a specified function F(r) as
shown in Figure 9.11.

~= o > I
We realize the physical situation in which Figure 9.11 | Lower end

temperature: 0°C

heat flows from the top end of the cylinder in
boththe radial and longitudinal direction. We may thus designate the temperature in the
cylinder by T(r,z) in a cylindrical polar coordinate system.

The governing PDE for T(r,z) in a steady-state heat conduction as described above
may be obtained by selecting the right terms in Equation (9.14b) in cylindrical polar
coordinate system in the following form:

2 2
0°T(r,z) N 8T(r,z)+ 0°T(r,z)

—0 (9.52)

or’ r or oz’
with specified boundary conditions: T(a,z)=0 (a1)
and T(0,2) # (a2)
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9.6.2 Steady-State Heat Conduction Analysis in Cylindrical Polar Coordinate System — Contd

o°T(r,z) laT(r,z) o'T(r,z) 0 (9.52)
ot ar 822 )
T(a,z) = T(0,z) # (a1, a2))
T(r,0)=0 (a3)

Following the usual procedures in separation of variable technique (p.312) , we let:
T(r,z) = R(r) Z(z) (b)
where the functions R(r) and Z(z) involve only one variable r and z respectively.

Upon substituting the above expression in Equation (b) into Equation (9.52), and after re-arranging
the terms, we will get the following equality:
1 &°R(r) 1 &R(r) 1 2°Z(2)
T == 2 (c)
R(r) or*  rR(r) or Z(z) oz
The only way that the above equality can exit is having both sides to be equal to a constant:
1 d?R(r) 1 dR(r) 1 d’Z(z)

We thus have: __ __p d
& THS have R(r) dr? +rR(r) dr Z(z) dz? 4 ()

We have thus split the PDE in Equation (9.52) into two separate ODEs as follows:

d*R(r) dR e
0°T(r,z) 10T(r,z) &°T(r,2) ' drg) o, +IB°R(r) = 0 ©
+— + =0
or’ ror oz’ < d?Z(z) _F7(2)=0 (f)
dz
Satisfying the conditions: =0 (g
Ro¢w (92
Z(0Y =0 (93
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9.6.2 Steady-State Heat Conduction Analysis in Cylindrical Polar Coordinate System — Contd
Solution of the Partial Differential Equation using Separation of Variable Technique-Contd:

The solution of the ODE in Equation (e) involves Bessel functions as in the case in Section 9.5.2 and
in Equation (9.41) on p.305 to take the form: Rfr)= AJ, (sr)+BY,(sr)

The condition specified condition in Equation (g2) results in having the constant coefficient in the
above expression to be: B = 0, because the second term in the above solution in the above
expression cannot be allowed in the expression because Y (0)—-, which is not realistic. Hence we
have: Jo(Bpa) =0 ()
The separation constant 3 is obtained from Equation (j), and there are multiple roots of that equation, with:
B =B, By Base-eee B, with n = 1,2,3,....,n. The solution of other ODE in Equation (f) is:

Z(z) = C cosh(Bz) + D sinh(Bz) (k)

Substitution of the condition Z(0) = 0 in Equation (a3) into Equation (k) will lead to the constant C =
0. We will thus have: Z(z) = D sinh (3z). However, since Z(z) involve the multi-valued ,, We may
express Z(z) in the form: Z(z) = D,, sinh(B,z) (m)

We can thus express the solution T(r,z) in Equation (9.52) in the form of:
T(r,z) = [AJo(B,NIID,sinh(B,z)] with n =1,2,3,.....n, or in a more compact form:

T(r.2)= 30,0, (6,fsinh .2 (9.53)

Where b,, are multi-valued constant in the the above equation that may be obtained by using the
Fourier-Bessel relation as expressed on P. 307, resulting in the following form:

2F(I’) J'

L
= J d ithn=1273,......

0
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9.7 Partial Differential Equations for Transverse Vibration
of Cable Structures (p.314)

Transverse vibration of strings (equivalent to long flexible cable structures in reality) are used
commonly used in structures such as power transmission lines, guy wires, suspension bridges.

These structures, flexible in nature, are vulnerable to resonant vibrations, which may result in
devastations in public safety and property losses to our society.

Long power transmission lines Radio tower supported by guy wires

7 1 \ Iill .-?“:

o
)

N

The world famous
Golden Gate
Suspension Bridge

A cable suspension
Bridge at the verge *
of collapsing:




9.7.1 Derivation of partial differential equation for free vibration of cable structures

We begin our derivation of math models for the vibration

r g

analysis of strings (equivalent to long flexible cables) with ¥ Timet=0

an initial sagged shape that can be described by a function

f(x) as illustrated in Figure 9.15. 0 -

Following idealizations (or hypotheses) were made in
the derivation of mathematical modes for free vibration
analysis of cable structures:

(1) The cable is as flexible as a string.

-

- -
- -
- -

Figure 9.15 A Long Cable Initially
in Statically Equilibrium State

It means that the cable has no strength to resist bending. Hence we will exclude the bending

moment and shear forces in our subsequent derivations.

(2) There exists a tension in the string in its free-hung static state as shown in Figure 9.15.
This tension is so large that the weight, but not the mass, of the cable is neglected in the

analysis.

(3) Every small segment of the cable along its length, i.e. the segment with a length Ax

moves in the vertical direction only during vibration.

(4) The vertical movement of the cable along the length is small so the slope of the deflection

curve of the cable is small.

(5) The mass of the cable along the length is constant, i.e. the cable is made of same material

along its entire length.
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9.7.1 Derivation of partial differential equation for free vibration of cable structures — contd

"

A slight instantaneous lateral movement of the cable in
Figure 9.15 at time t = O will result in laterally vibrate
up-and-down in the x-y plane as shown in Figure 9.16(a)

—_—
-
-

S ———— —_—

P+AP

} a+Aa

[
I
I
|
!
aAw : u+Au
I
I
I
I
1

i M
See detail A ass center

Amplitude of vibration, u(x,t)

| % J

>

X+AX

(a) Instantaneous shape at time t () Forces on a segment (Detail A)

Figure 9.16 Shape of a vibrating Cable

u(x+Axt) Let the mass per unit length of the string be designated by m. The total
P+AP mass of string in an incremental length Ax in Figure 9.16 (b) and 9.17
(P+AP)sin(o+aa)  Will thus be (mAX).

u(xt) Mass center

The condition for a dynamic equilibrium at time t as
illustrated in Figure 9.17 according to Newton’s
second law presented in the equation of motion has
the following relationship:

Figure 9.17 Free-body Force diagram Total applied forces: Mass: X Acceleration:
of a vibrating cable 2F - m a
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9.7.1 Derivation of partial differential equation for free vibration of cable structures — contd

u(x+Axt) We mentioned in the last slide that the PDF that we will
use to model for free lateral vibration analysis of the cable
May be derived from Newton’s Second law of dynamics:

Mass center

Total applied forces: Mass: Acceleration:

2F = m X a
We further realize that the mass of the segment
of the cable in Figure 9.17 may be expressed to
be: M= mAx, in which m= mass of the cable per
unit length, and the acceleration is equal to:

d%u(x,t) Wwhere u(x,t)= instantaneous
= T deflection (magnitude) of the

Fig. 9.17 Free-body force diagram vibrating cable at x.
.2 L y 9 We assume this dynamic force acts at the mass

center as shown in Figure 9.17.
We may derive the following expression for the dynamic force equilibrium on a small section of the cable at time t:

LFE, = (P+AP)sin(a + Aa) — Psina + (mAx) ( u+ ﬂ) 0

We may delete the term: APsin(a+Aa) in the above expression because both AP and Aa are small. We thus have
the following for our further derivation:

X F, = Psin(a + Aa) — Psina + (mAx) ( + ﬂ) =

But since Sin(a+Aa) ~ tan(a+Aa) = 8U(X;_XAX’t) cand sina ~ tana = ou X,t) ,
X

we will have the following expression after substitutions of the above relationships in the dynamic force
equilibrium equation: AU(X +AX,t)  ou(x.t 0> AU
pl QU A _ AL | _ 10,0 [ A
OX OX 2
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9.7.1 Derivation of partial differential equation for free vibration of cable structures — contd

If we divide every term in the last expression we will obtain the following expression:

P[au(xmx,t) - 8u(x,t)} _ (mAX)ﬁ(U +g)
X OX ot? 2

Ou(X + Ax,t)  ou(x,t)

2
or P X X _ O (u+Auj
AX ot? 2

By imposing the condition that the function of the lateral deflection u(x,t) of the vibrating cable varies

(changes) its magnitudes continuously along the cable length in the x-coordinate, i.e. Ax—0, and the
increment of u(x,t), i.e. Au is small enough to be neglected (i.e. Au—0), the above expression may be
expressed in the following form:

ou(X+ Ax,t) ou(x,t) 5 )
B d%u(x,t
ox o _ouxy g ou(xt) _ . 0 (u+ Azuj

We thus have the PDE for the free vibration analysis of long flexible cable in the form of:
o°u(x,t) 2 d2u(x,t)
ot* ox*

/ P
where @ = ,/[— with P = tension in the string with a unit of Newton (N) and m = mass of
m

the cable per unit length in kg/m. The unit for the constant a in Equation
(9.54) is thus m/s.

/im
AX—0 AX ox? OX 2 ot 2

(9.54)
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9.7.2 Solution of PDE for free vibration analysis of cable structures (p.318)

y
We will demonstrate the application of Equation (9.54) for the T L
free vibration analysis of a long cable structure illustrated in \
Figure 9.18. 0

-
-
-
—_—

-
-
-
- I ———

The cable initially has the shape in the dotted curve in Figure ‘
9.18 that can be described by function f(x). Cable deflection @t>0 |

X=0 Fiqure 9.18

Lateral vibration of the cable with instantaneous magnitudes u(x,t)

is induced to the cable by a small instantaneous disturbance with a slight vertical push to the cable downward
that produces the instantaneous shape of the cable as shown in the sloid curve in the same figure at time t.

The free vibration of the cable with the lateral amplitudes u(x,t) is sustained by the “mass” of the cable material
and its inherit “elasticity” of the cable. Our analysis is to solve u(x,t) for the physical situation described above.

We will use Equation (9.54) to solve for the u(x,t) by the separation of variables technique, as we did in
Section 9.6 for heat conduction analysis. We will thus have the following mathematical model for the solution:

o°u(x,t) 22 d7u(x,t)

The PDE: (9.54)
ot? ox*
The initial conditions: U(X’t)‘tzo _ u(X,O) _ f(x) (9.55a)
ou(x,t) 1(x.0) = 0 (9.55b)
o e 7
The end (boundary) conditions: u(x,t)‘ = u((),t) -0 (9.56a)
ux,tf  =u(Lt)=0 (9.56b)
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9.7.2 Solution of partial differential equation for free vibration analysis of cable structures — Contd
o°u(x,t) 42 d2u(x,t)

g b (9.54)

u(x,t)_ =u(x0)= f(x) (9.55a)

ou(x,t) _ i(x.0) = 0 (9.55b)
oo

u(x,t)  =u(0,t)=0 (9.56a)

u(x,tf  =u(Lt)=0 (9.56b)

Solution of Partial Differential Equation (9.54) by Separation of Variables Method (p.319):
We will need to separate these two variables x and t from the function u(x,t) in Equation (9.54) by
letting: u(x,t) = X(x) T(t) (9.57)

The relation in Eq. (9.57) leads to:

aulxt) _ DX (T ()] = T(t)M =T((t)x'(x) and oxt) _ @ [X(X)T ()] = X(X)ﬂ(t) = X(X)T'(t)

X ox ox ot ot at

Fulet) 2 [ ey and SOt 2] g

2 ox| o o> at| ot

Substituting the above expressions into Equation (9.54) will lead to:

1 d T 1 dPX() _ )
2T d X(x) dx = RHS = a constant (-3?)

LHS =

We thus have:

1 dT@) 1 dZX(X):_ﬂz (9.58)

2 2 2
a‘T() dt X(X) dx 54



9.7.2 Solution of partial differential equation for free vibration analysis of cable structures — Contd
We will thus get two ordinary differential equations from (9.58):

2
2 d dIz(t) +a’p’T()=0 (9.59)

o
1dT) 1 dEX(0) 2“'\

a’T(t) dt>  X(x) dx’

-p
N d2X (x)

I B> X(X) =0 (9.61)

After applying the same separation of variables as illustrated in Eq. (9.57) on the specified
conditions in Equations (9.55) and (9.56), we get the two sets of ODEs with specific
conditions in the following expressions:

2 2
d T2(t) +a’frT)=0 (999 d XZ(X) + B2X(X) =0 (9.61)
dt dx
T(0) = f(x) (9.60a) X(0) = 0 (9.62a)
aTo _, (9.60b) X(L)=0 (9.62b)
dt t=0
Both Equations (9.59) and (9.61) are linear 2"d order ODEs with their solutions to be in the
following forms:
T(t) = A Sin(Bat) + B Cos(pat) (9.63) X(x) =C Sin(Bx) + D Cos(Bx) (9.64)
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9.7.2 Solution of partial differential equation for free vibration analysis of cable structures — Contd

The lateral amplitude of vibration cable u(x,t) in Figure 9.18 or the solution of Equation (9.54) can thus be
expressed by sustituting the expressions in Equations (9.63) and (9.64) in Equation (9.57) to give:

T(t) = A Sin(Bat) + B Cos(Bat) X(x) = C Sin(px) + D Cos(Bx)

N

u(x,t) =[A Sin(Bat) + B Cos(Bat)][ C Sin(Bx) + D Cos(Bx)]

where A, B, C, and D are arbitrary constants need to be determined from the given initial and
boundary conditions given in Egs. (9.60a,b) and (9.62a,b)

Determination of arbitrary constants:
Let us start with the solution: X(x) = C Sin(Bx) + D Cos(Bx) in Eq. (9.64):

From Eq. (9.62a): X(0) = 0—>

C Sin (B*0) + D Cos (*0) = 0, which means that D = 0—> X(x) = C Sin(Bx)
Now, from Eq. (9.62b): X(L) =0:—> X(L) = 0 = C Sin(BL)

At this point, we have the choices of letting C = 0, or Sin (BL) = 0 from the above
relationship. A careful look at these choices will conclude that C # 0 (why?), we thus have:
Sin(BL) =0
The above expression is a transcendental equation with an infinite number of roots for the
solutions with BL= 0, T, 211, 31T, 41T, 5TT............ n1T, in which n is an integer number.

We may thus obtain the values of the “separation constant, 3” to be:

Nz
0 b= L N=0,1,2,3,4c...... ) (9.66) 56



9.7.2 Solution of partial differential equation for free vibration analysis of cable structures — Contd

Now, if we substitute the solution of X(x) in Eq. (9.64) with D=0 and B, = nti/L withn =1, 2, 3,..
into the solution of u(x,t) expressed in the following form:

u(x,t) =[A Sin(Bat) + B Cos(Bat)][ C Sin(Bx) + D Cos(Bx)]
We will get:
u(x,t) = (ASinnTﬂaH BCosnTﬂat)C SinnTﬂx n=1,2,3,,........ )

By combining constants A, B and C in the above expression, we have the interim solution of
u(x,t) to be:

We are now ready to use the two initial conditions in Eqgs (9.55.a) and (9.55b) to determine
constants a, and b, in the above expression:

(X t) -
Let us first look at the condition in Eq. (9.55b): =0
t=0
oux,t)l - _ O:nﬂa(a nzat_b i nﬂatj sin %
ot |, L o L

But since SinnT”x;tO (why?) ——> a,=0 —

Nza

u(x,t) = Zb Cos—tS| n——Xx

Thus, the only remaining constants to be determlned are: b, in the above expression. 57



9.7.2 Solution of partial differential equation for free vibration analysis of cable structures — Contd

Determination of constant coefficients b in the following expression (p.321):

Nza Nza

u(x,t) = Zb Cos—t Sin n——Xx

The last remaining condition of u(x,0) = f(x) in Equation (9.55a) will be used for this purpose,
in which f(x) is the given initial shape of the string.

Thus, by letting u(x,0) = f(x), we will have:

u(x,0) = ibn Sin% = f(x) with 0<Xx<L
n=l

There are a number of ways to determine the coefficients b, in the above expression. What we
will do is to follow the orthogonality of trigonometric functions in Section 9.5.1 (p.302) to determine
the coefficient b,, in the following way:

b. :% [ 10 sm”LLX dx (9.68)

The complete solution of the amplitude of lateral vibrating string u(x,t) becomes:

u(x, t):z UOL f(x)SinnLLdej Cosnﬂ—ft SinnLLX (9.69)

n=1
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9.7.3 Convergence of Series Solutions (p.322)

Solution to partial differential equations by the separation of variables technique such
as presented in Sections 9.5 to 9.7 include summations of infinite number of terms
associated with the infinite number of roots of transcendental equation (or characteristic
equations as mentioned in Chapter 4.The solution in Equation (9.69) for the PDE in
Equation (9.54) is also in the form of infinite series.

Numerical solutions of these equations can be obtained by summing up the solutions
with each assigned value of n, thatiswithn=1,2, 3, ....... to a very large integer
number.

In normal circumstances, these infinite series solutions should converge fairly rapidly,
SO one needs only to sum up approximately a dozen terms with the number n up to 12
for reasonably accurate solutions of the problems.. However, the effect of the
convergences of infinite series, such as the one in Equation (9.69) on the accuracy of
the analytical results remains a concern to engineers in their analyses.

We will demonstrate the convergence of a series solution related to Equation (9.69) for
the vibration of a long cable similar to the situation depicted in Figure 9.18 with L = 20
m and the constant coefficient a = 120 m/s. We assume that the initial shape of the
cable can be described by a function f(x)=0.25sin % X

The magnitude of the amplitude of vibrating cable at x =5 m att = 1 second is from Equation
(9.69) is of the form: R Cnzle0 . nrx
u(s’l)_EZ{COS(&VZ)SIHT(L smE)de}

n=1
or in the form with numerical values of n = 1,2,3,....,n:

Ub,1) =u;+u,tug+uUs+Us+oiiii, +u 5



9.7.3 Convergence of Series Solutions — Cont'd

We used the MicroSoft Excel software to compute the numerical values of u(5,1) with

n=1,2,3,...,16 with the computed results shown in the following Table:

U, Us U |Uy |[Us |Ug [Uz jUg |Ug |[Uqg |Uyy [Ugp | Uqz | Ugy [ Ugs | Uyg
16 3.8 28 |0 938 (322 | 938 |0 563|114 | 563 |0 402 | 577 | 4.02 |0
E-2 E-2 E-2 E-3 |E3 |E3 E3 |E3 |E3 E3 |E4 |E3

and with more terms with additional values of n (up n = 30) in Figure 9.19:

—0.02T

—0.04 T

0.047T

0.02

Figure 9.19 Convergence of infinite series solution of
Equation (9.69) at x = 5, t=1

We observed from this particular case of numerical solutions of the infinite series solution

of Equation (9,69) that inclusion of the first 20 terms in the series (i.e., n = 1,2,3,

,20)

would offer reasonably accurate solution of u(5,1) because of the continuous diminishing

of the effects of the values of u(5,1) with the inclusion of terms with additional terms with

n-values, as illustrated in this figure.
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9.7.4 Modes of Vibration of Cable Structures (p.323)

L !

-
—
-
-

! f Vibration after t J 0*

J——

Shape @ t = 0: f(x)Initial shape
Instantaneous

Displacement

@ x and time t: u(xt)

x

X

1l
(@)

We have just derived the solution on the AMPLITUDES of vibrating cables, u(x,t) to be:

0

2 2 ( eL . NzX nzat .. nzXx
ux,t)y=» — f(x)Sin——dx |Cos—— Sin—— (9.69)
(%1 ZLU (%) L J L L

n=1

We realize from the above expression that the solution consists of INFINITE number of terms
withn=1,n=2,n=3,......... What it means is that each term alone in the infinite series in
Equation (9.69) is a VALID solution. Hence: u(x,t) with one term with n = 1 only is one possible
solution, and u(x,t) with n = 2 only is another possible solution, and so on and so forth.

Consequently, because the solution u(x,t) also represents the INSTANTANEOUS SHAPE
of the vibrating string, there could be many POSSIBLE instantaneous shape of the vibrating
string depending on what the terms in Eq. (9.69) are used.

Predicting the possible forms (or INSTATANEOUS SHAPES) of a vibrating string is called

MODAL ANALYSIS 61



9.7.4 Modes of Vibration of Cable Structures — contd

The First Three Modes of Vibrating Cables:
We will use the solution in Eq, (9.69) to derive the first three modes of a vibrating string.

Mode 1 withn =1 in Eq. (9.69):

rzat ) .. Nz
u,(xt = (blCOSTj SlnTx (9.69)
The SHAPE of the Mode 1 vibrating string can be illustrated according to Eq, (91.71a) as:
@ time t,
Figure 9.20 K— ....... I .—..-"1'-——>X
~ -
| S~
X=0 X=L
@ time t;

We observe that the maximum amplitudes of vibration occur at the mid-span of the string,
As illustrated in Figure 9.20.

The corresponding frequency of vibration is obtained from the coefficient in the argument
of the cosine function with time t in Equation (9.69), i.e.:

f:ﬂa/L:azl\/E (9.70)
"2z 2L 2L\m

where P = tension in Newton or pounds, and m = mass density of string/unit length
in kg/m3 or slugs/in. 62




9.7.4 Modes of Vibration of Cable Structures — contd
Mode 2 with n = 2 in Eq. (9.69):
we will have the amplitude of the vibrating cable to be:
U,000) = [bZCosz—fatj SinzT”x (9.71a)

@ timet,

Possible shape of the _ ___ .- é_“_ﬂ
cable in Mode 2 vibration: T 'j .
L L/2 iy 5|
X EO ! X=L
Frequency of Mode 2 vibration: ¢ _ 2za/L _a _ 1P (9.72)
2r L LVm
Mode 3 with n = 3 in Eq. (9.69):
u,(xt = (b3Cos37zTatj Sin%x (9.73a)
@ timet, @ time t;
Possible shape of the *__1_/_/_ S __ x
Cable in Mode 3 vibration: ~L L 'T\ A
!\ L3 e L3 o L3 \!
X=0 X=L
Frequency of Mode 3 vibration: f, = Smll _3a _ i\/E (9.74)
2z 2L 2L\m
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Physical Importance of Modal Analysis in Vibration of Cable Structures

Modal analysis provides engineers with critical information on where the
possible maximum amplitudes may exist when the string vibrates, and the
corresponding frequency of occurrence.

|dentification of locations of maximum amplitude allows engineers to
predict possible locations of structural failure, and thus the vulnerable
location of string (long cable) structures.

Of course, the multiple number of natural frequencies f, such as indicated
in the Equations (9.70), (9.72) and (9.74) for the cable in Figure 9.18 with
Mode number n =1,2,3, are the indicators of what the frequencies of the
applied intermittent loads should be avoided to this kind of structures in
order to avoid the devastating resonant vibration of the structure. Modal
analysis of cable structures such as illustrated in Figures 9.12-9.14 is thus
a critically important part of the analysis.
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Example 9.6 — A numerical case illustration of vibration analysis of a cable structure (p.325).

A flexible cable 10 m long is fixed at both ends with a

tension of 500 N in the free-hung state (see the figure ' Time t =0
in the right.
0 ,\rﬁ:-_______-—_-'_j’ﬁx
The cable has a diameter of 1 cm and with a mass TR T
density p = 2.7 g/cm3. ]
|

If the cable begins to vibrate by an instantaneous but
small disturbance from its initial shape that can be
described by the function f(x) = 0.005x(1-x/10). Determine the following:

a) The applicable differential equation for the amplitudes of vibration of the cable
represented by u(x,t) in meters, in which t is the time into the vibration with a
unit of second (s),

b) The mathematical expressions of the applicable initial and end conditions

c) The solution of u(x,t) of the differential equation in meters

d) The solution of amplitude of the vibrating cable in Mode 1, i.e., u,(x,t) with the
magnitude and location of the maximum deflection of the cable in this mode of
vibration.

e) The numerical values of the frequencies of the first and second mode of vibration

f)  The physical significance of these mode shapes.
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Example 9.6 — A numerical case illustration of vibration analysis of a cable structure-Cont’d.
Solution (p.326):

We realize the following specific conditions:

The length of the cable L = 10 m, with a diameterd =1 cm =0.01 m
The cable is made of aluminum with a mass density p = 2.7 g/cm3

The cable is subjected to a tension P = 500 N and with initial sag described by
the function f(x): f(x) = o,oosXIF_%

a) The applicable differential equation for the amplitudes of vibration is Equation (9.54)
o’u(x,t) 22 d2u(x,t)
ot ox°
with the canstant coefficient a in the above equation determined by the following expression:
\[;

(9.54)

a= in which P = tension in the cable = 500 N and m = mass per unit length which
needs to be computed with given conditions. The mass per unit length of the

cable is m = M/L where M = total mass of the cable with M = pV with V being the
volume of the cable. 2
We will get the volume of the cable be computed by the expression V="—"-L=7.85x10"m’

We will thus have the total mass of the cable M = pV = (2.7x103)(7.85x10-4) = 2.12 kg, leading to
the mass per unit length of the cable to be 0.212 kg/m. The constant coefficient according to the

expression in Equation (9.54) is: P 300
a= \/:: ‘/—=48.56m/s
m 0.212

The applicable PDE in equation (9.54) thus takes the form:

2%u(x,t) d%u(x,t)
52 - 2358.07 “ax2
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Example 9.6 — A numerical case illustration of vibration analysis of a cable structure-cContd.
Solution — Cont'd (p.326)
b) The mathematical expressions of given initial and end conditions:

The initial conditions:

u(xt)_, =u(x0) = f(x)= 0.00SX(I—%j (b1)
%H} =1(x,0)=0 (b2)

The end conditions:

u(x,t) _, =u(0,t)=0 1)

u(xt)_ =u(L,t)=u(0,t)=0 (c2)

c) The solution of u(x,t) of Equation (a) satisfying the given conditions in Equations (b1,
b2) and Equations (c1 and c2) will be obtained as follows:

The solution of Equation (a) is similar to that of Equation (9.69) with a = 48.56 m/s
in the following expression:

u(x,t)= i%{ ["0.005 x( —%)sinnl—zxdx}{cos %ﬁt}{sin?—gx}}
or u(x,t):i%{ﬁoo OOSX(I—Ejsml—dX}[coslS 25nt][sin 0. 314nx]} d)

or u(x,t) = 15} 1 {1+2 Nz ](coslS.ZSnt)(sinO.3l4nx) (e)
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Example 9.6 — A numerical case illustration of vibration analysis of a cable structure-cContd.

Solution — Cont'd (p.322)

d) The amplitude of the vibrating cable in Mode 1, i.e., u,(x,t) with the magnitude and
location of the maximum deflection of the cable in this mode of vibration:

The required solution is obtained by letting n = 1 in Equation (e) as:

3
T T

u,(x,t) = —0.1{1(“ z_ﬂﬂcos15.25t sin0.314x = —0.02376 cos15.25tsin0.314x  (f)
The maximum amplitude occurs at the mid-span of the cable at x =5 m, and at the time when
cos15.25t = 1.0. We thus have the maximum amplitude U4 ., = 0.02376 m, or 2.376 cm at x = 5

m and at time 15.25t =1, ortime t =1/15.25=0.2 s.
e) The numerical values of the frequencies of the first and second mode of vibration:

We may use Equations (9.70) and (9.72) to compute the numerical values of the frequencies of
the first and second mode of vibration as follows:

1 |P 1 [ 500 1 /P 1 /500
f=—|—=—— """ =243Hz for M 1,and f, =—,]— =—,—— =4.86Hz for Mode 2
" 2LVm 2x10V0.212 orMode 1, and 1, LVm 10V0.212

f) The physical significance of these mode shapes to the design engineer

Engineers will use the outcomes of the above modal analysis to advise the users of this cable
structure on possibility of devastating resonant vibration of the cable structure should the
frequency of applied cyclic force, such as wind force coincides any of the natural frequencies
computed in Part (e) in the solutions. The users will also be made aware of the locations
where maximum amplitudes of vibration may occur as the mode shapes indicate in the modal
analysis. They should avoid placing delicate attachments to these locations on the cable
structure to avoid potential damages due to excessive vibration at these locations.
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9.8 Partial Differential Equations for Transverse Vibration of Membranes (p.328)

Solids of plane geometry, such as thin plates are common appearance in machines and
structures. Thin plates (or thin diaphragms) can be as small as printed electric circuit
boards with micrometers in size or as large as floors in building structures. Like flexible
cables, thin flexible plates are normally flexible and be vulnerable to transverse vibration.
In some cases, these plates may rupture due to resonant vibrations, resulting in significant
loss of property, and even human lives.

This section will derive appropriate PDEs that allow engineers to assess the amplitudes
in free vibration of thin plates that are flexible enough to be simulated to thin membranes.
Engineers may use this mathematical model for their modal analysis for the safe design
of these types of machine components and structures.
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9.8.1 Derivation of partial differential equation for plate vibrations (p.328)

We will derive the mathematical model for the transverse

vibration of thin plates with the following idealizations and r(x’y't)

hypotheses: [ § Py

1) The derivation of mathematical expressions is based l ‘
on the lateral (vertical) displacement of solids of plane 20yt

geometry that are flexible and offer no resistance to \

bending. In reality, the structure fits the description of y
“‘membranes” in the subsequent analysis. X o _

2)Thin plates with unsupported large plane areas that are Flgure 9.25 Transverse vibration of thin plate
sufficiently flexible in lateral deformations.

3) Being flexible, there is no shear stress in the deformed thin plates.

4) The thin plate is initially flat with its edges fixed. There is an initial sag represented by a
function f(x,y) sustained by in-plane tension P per unit length of the plate in all directions.
The tension P is large enough to justify neglecting the weight of the plate.

5) Figure 9.23 defines the plate in the (x,y) plane with lateral displacement z(x,y,t), the amplitude
of vibration of the plate at the locations defined by the x-y coordinates and at time t.

6) Every part of the plate vibrates in the direction perpendicular to the plane surface of the
plate, i.e., in the z-coordinate as illustrated in Figure 9.24 The slopes of the deformed surface
of the plate at all edges are small.

7) The mass per unit area of the plate, designated by the symbol (m) is uniform throughout
the plate.

We notice that the solution of the amplitudes of vibrating membrane (or thin plate) z(x,y,t) now
involves 3 independent variables: x,y and t. We may well image that it would be a much more
complicated analysis problem than the cases that we have covered so far in this book.
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0.8.1 Derivation of partial differential equation for plate vibrations — cont'd (p.329)

Figure 9.24 is a free-body diagram which shows all forces acting
on a small deformed element of the plate during a lateral
vibration. The situation satisfies a dynamic equilibrium condition
with the summation of all forces present at time t be equal to
zero. Mathematically we may express this condition in the form:

Y F, =0

The induced dynamic force F by Newton’s second law

/o:\w‘.:\\ plays a major role in the formulation of the above
X @ y equilibrium of forces. Mathematically, this force may be

I
I
|
1
I
|
1

I(X,y-,Ldy
(Xﬂlx,y) Projection of deformed expressed as. GZZ(X, y,t)
(X*‘Axl Vi membrane element on F = m—2
4 X-y plane
Figure 9.24 A free-body diagram From Figure 9.24, we have the following dynamic equilibrium
of forces in an element conditions: .
ibrati : : : . Z|X
ZI }[/i'nt;;at'“g membrane PAxsin(a + Aa)—PAxsina +PAysin( 8+ AB)—PAysin 4 — m(AxAy)% =0 (9.795)

where m = mass per unit area of the plate material.

Idealization No. 6 indicates that both angles a and 3 are small, leading to the following approximate

relationships:
AX
ozZ| X+—,V,t
( 2 y)

oy

62(X+A2X,y+Ay,tj

sin(a +Aa) ~ tan(a + Aa) = &

sinag =~ tana =

az[x+Ax, y+A2y,tj

oz| X +ﬂt
ST sin(8+Af) = tan(B+Ap) = >

sinff = tanf} =
OX 71




0.8.1 Derivation of partial differential equation for plate vibrations — cont'd

Substituting the above 4 approximate relationships into Equation (9.75) will result in the following
expression:

az[x+AX,y+Ay,tj az(x+AX,y,tj 82(x+Ax,y+Ay,tj az(x,y+Ay,tj
2 2 2 2
PAX - + PAy -

oy oy OX OX

2
- mAxAy—a z(x,zy,t)

The following expression is obtained by dividing the above expression by AxAy:

_ AX AX ]
62(X+2,Y+Ay,t) 8z(x+2,y,t) 6[x+Ax,y+A2y,tJ 6z(x,y+A2y,t)

P ay ay + OX OX
Ay AX

2
e 2(x, y,t)_o

ot?

Given that the lateral deformation of the plate continuously varying with the locations on the
plane defined by the x- and y-coordinate, we should have the following relationships shown in
the next slide.

72



0.8.1 Derivation of partial differential equation for plate vibrations — cont'd

6z(x + A2x y+ Ay,tj 6z(x + A2x y,tj

sim oy oy _d’z2(xy,t)
Ay—0 Ay 6y2
az[x+Ax,y+Ay,tj 6z(x,y+Ay,tj
and 2 ) 2
- ox Ox 0*7(x, y,t)
Zim -
AX—0 AX 8X2

The equilibrium equation in (9.75) thus has the following form with Ax—0 and Ay—0 for continuous
variation of the amplitude of vibration of the plate in both x- and y-coordinates with:

2 2 2
P{a z(x, y,t)+a z(x, y,t)}_ma z(x,y,t)

oy’ ox’ ot?
o’z(x,y,t) | d*z(x,y,t) 8z(x,y,t)
orinthe formof. ————=a + 9.76
ot’ ox’ oy’ (9.76)
where the constant a in Equation (9.76) has the similar form as in Equation (9.54) but with different

meaning: P

a=_.[— (9.77)
m

where P is the tension per unit length with unit N/m, and m is the mass per unit area kg/m?. The
constant a thus has a unit of m/s.
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9.8.2 Solution of a Partial Differential Equation for Thin Plate Vibration (p.331)

Y
We will use Equation (9.76) to compute the magnitudes of a A//////////
transverse vibrating thin plate such as a computer mouse pad, oyl 1
induced by a slight instantaneous disturbance in the z-direction ; o at
in Figure 9.25. )
OTTTTTTT77 >
We will have the following PDE and the given appropriate initial N b >
and boundary conditions for the solution of the magnitudes ﬂthPhl_er\]n ‘l’;‘g °r‘: ;efr'e;‘,‘g'ea
of the vibrating plate at given time t, i.e. z(x,y,t) in Equation (9.76): tr;nﬁversgvibra%o'n?
0°z(x,y,t) .2 8zz(x,y,t)+ 0°z(x,y,t)
A) The boundary conditions:
z2(x,y,t),_, =2(0,y,t)=0 (a1)
z(x,y,t),_, = z(b,y,t)=0 (a2)
206 Y5Y , = 2(x0t) =0 (b1)
2(x,y.t) = 2(xct)=0 (b2)
B) The initial conditions:
2(x.y.t),, = f(xy) (c1)
%yt _ oy (c2)

a o

The function g(x,y) in Equation (c2) is another given function that describes the velocity of the plate

across the plane of the plate at the inception of the vibration. 74



0.8.2 Solution of a Partial Differential Equation for Thin Plate Vibration — Contd

o°z(x,y, .| 0%z(x,y, o°z(x,y,
o), [ e st), ety t)} (9.76)
z(x,y,t) _, = z(0,y,t)=0  (al) 2(x,y,t) = z2(b,y,t) = 0 Ea%;
26y, , = z(x,O,t) 0 (b2) 2(x, y, Xyzc z(x,c,t) =0 b
Yat), = f(x 1 .Y,
2063.t)e, = F00y) (c1) 62(3 y t)t_o = g(x.) (c2)

We will use the separation of variables techniques to solve the above equations with the specified boundary
and initial conditions. This technique requires the solution z(x,y,t) of Equation (9.76) to be the product of 3
separate functions each contains only one of the 3 independent variables as:

Z(x,y,t) = X(X)Y(y)T(t) (9.78)

Substituting the expression in Equation (9.78) into Equation (9,76) will lead to the following expression:

1od’X(x) 1 dY(y) 1 dT(t)
LHS = % we ~ V() oy a7 a¢ - RHS

The equality of both sides in the above express is possible if both sides equal to a constant by
the principle of mathematics. We thus have the following valid expression instead:

LX) 1 dY(y), 1 AT, d
LHS =360 e~ V() o e ae - D RS @

where A in Equation (d) is the first separation constant in this analysis

Equation (d) results in the following 2 ordinary differential equations (ODE):

. . . . 2
The first ordinary differential | d X(X)+/12X(x) 0 e)
equation for function X(x): dx?
and another equality leads to 1 d ZY(y) — 1 dT (t) + 12 (f)
the 2nd ODE: Y(y) dy*>  a’T(t) dt’
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0.8.2 Solution of a Partial Differential Equation for Thin Plate Vibration — Contd

’z(x,y,t) .| d%z(x,y,t)  8’z(x,y,t)
ot? -8 { ox’ " oy’ (9.76)
Z(Xa y’tlx:o = Z(Ov y7t> =0 (a1) Z(X’y’t]x:b = Z(b,y,t) =0 Eazg
Z(X: yat y=0 = Z(X,O,t) =0 (b2) Z(X: yatxyzc = Z(X:C:t) =0 b1
2(x,y,t)_, = f(xy) c1 az(x, .t
) % = g(xy) (c2)
t=0

For the same reason; the validity of the equality in Equation (f) requires that both sides of the equality to be
a same constant as shown below:

1od(y) 1 dT(t)
LHS =V(y) "oy ~aT() ar

where y is the second separation constant in expression (g).

+2 =17 = RHS (9)

We may derive another two ordinary differential equations from the expression in Equation (g):

Y. "
%Z(t)+a2(/12+y2)r(t)=0 )

We have thus separate the variables in PDE in (9.76) onto 3 ODEs using the separation of
variables technique in Equation (9.78) as shown below:

+2X(x)=0 (e)

dx?
2’ z2(x,y,t) _ a{a2z(x,y,t)+ 82z(x,y,t)} (9.76) / sz(y)Jr/fY(y) 0 (h)

ot’ ox’ oy’®

ra(B 42T =0 (i)
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0.8.2 Solution of a Partial Differential Equation for Thin Plate Vibration — Contd

XM, 2= 0 (e)

/ dxz

o%z(x,y,t 2| 0%z(x,y,t)  9’z(x,y,t . d¥ )

or) o) ZHer), 220 (9.76>\, ) i) = o )
d T(t)+a2(/12+y2)l'(t) =0

dt’ 0
2(x,y,t),, = 20,y,t) =0 (al) 2(x,y.t),_, = 2(b,y,t) =0  (a2)
26 Y,t|, = 2(x0) =0 (b1) 2(xy.t) = 2xct)=0  (b2)
2(x,y,t)_, = f(xy) (c1) az(g,ty,t) - a(x.y) (2)

We notice that all the 3 ordinary differential equations (ODE) in Equations (e), (h) and (j) are 2"d order
linear ODEs. Solutions of these equations are available in Section 8.2 (p.243), as shown below:

X(x) = c4Cco8AX + C,SinAX (k1)

Y(y) = cscospy + c,sinpy (k2)

T(t) = ¢, cosay| 2 + g’ t+¢, sinay A2 + > t (K3)
We may follow the similar procedures presented in Section 9.5.1 (p.298), 9.6.1 (p.308) and 9.7.2 (p.318) in
determining he constants c,, ¢,, c; 4,4 C4 iNn Equations (k1)and (k2), and we may determined the two
separation constants A and p to be: A=mT11/b with m = 1,2,3,...., and py=ntr/c with n = 1,2,3,...., respectively,
as well as c,=c5;=0 using the conditions in Equations(a1) and (a2). Consequently, we will have:

X(x) = c,sin Ax = C, , Sin M7ZX - with m = 1,2, 3 (m1)
Y(y)=c,singy =, sin 72 with 0 = 1,23, (m2)
' C
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0.8.2 Solution of a Partial Differential Equation for Thin Plate Vibration — Contd

X0, x(=0 @
02k y.t) _ {622(&2%0+ 8ZZ(x,zy,t)}(g_m) d;\;gy)wzv(y) -0 (h)
ot ox oy
ST (e ar) =0 ()
X (X) = ¢, sin AX = ¢, , sianﬂX with m = 1,2,3,........ (m1)
b (m2)

Y(y)=c,singy =c,, sin—= with n =1,2,3,....ccooo.....
’ G

The constant c; and ¢, involved with the solution in Equation (k3) may be determined with the initial
conditions specified in Equations (c1) and (c2) for z(x,y,t):in the following way:

2(x,y.t) = X(x)¥ (y)T(t)

2 2 2 2
:(Cmsinm—ﬂxj(c“sinn—ﬂyj C,cosa (Mj +[n—ﬁj t+C sina (Mj +(n—”j t (n)
’ b ’ c b c b c

2 2 mrz ? nx ?
Now if we let: @m =V/n+ 4 :\/(Tj J{Tj (p)
We may express the solution of PDE in Equation (9.76) in the following form:
2(x, y.t) ZZ(SIH— xj(sm— yj(Amncosaa)mnH B, sinaa,t) (9.79)
m=1 n=1

where the multi-valued constant coefficients A, and B,,,, are determined by the two remaining initial
conditions in Equations (c1) and (c2) with the forms:

4 pc b . .
A, :_J'O IO f(x, y)(sm%x)(smn—ﬁy)dxdy (9.80a)

mrz
B., = abCa) _[I Xy)(smTX)(sm—yjdxdy (9.80b)

withm,n=1,2,3,....
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9.8.3 Numerical solution of the Partial Differential Equation for thin plate vibration (p.334)

Numerical solution of the amplitudes of transverse vibration of flexible plates given in
Equation (9.79) with coefficients in Equations (9.80a) and (9.80b) is a much more tedious
and complicated than one would imagine. However, numerical solution can offer engineers
much needed perception on the natural frequencies of the plate structures — much more so
than what we may observe from the analytical solutions that we may obtain from the
aforementioned math expressions in the aforementioned equations.

What we will present in this section is the numerical solution of Equafion (9.79) for the

N

shapes of a thin flexible plate (a computer mouse pad) illustrated Ny rryy
in Figure 9.25 for its first three modes in vibration. / B ’I

/ : c
Dimensions of this plate is shown in lower figure in the right Cx
with the edges b=10" and ¢=5" and thickness of 0.185". (L

The pad is made of synthetic rubber, so it is flexible.

The pad has fixed edges with initial sagging that can be described
by a function f(x,y) = (10-x)(5-y) with an in-plane tension,
P = 0.5 Ibd/in

Vibration of the pad induced by a slight instantaneous disturbance
lateral to the pad from a static equilibrium condition (i.e.,
zero velocity) with which g(x,y) = 0.in Equation (c2).




9.8.3 Numerical solution of the Partial Differential Equation for thin plate vibration-contd
We will use Equation (9.76) to solve for the magnitudes of this thin plate:

2 2 2
’2(x.y.t) _ a{a z(x.y.t) 0 Z(X;y’t)} (9.76)
OX oy

R ot?
LLLL L with the following boundary conditions:
/] /
/ Py [ 2(x,y,t)_ = 2(0,y,t) = 0 (al) z(x,y,t) _, =z(b,y,t)=0 (a2)
/] /
YT >X z2(x, Y, = 2(x,0,t) = 0 (b1) 2(xy.t),, = 2xet) =0 (o)
< b > and the initial conditions: o2(x, y,t)
z(x,y,t)_, = f(x,y) =(10x)5y) (c1) . o alx.yk0 ©2
The constant coefficient “a” in the RHS of Equation (9.76) can be computed to be:
P 0.51b, /in)(32.2 ft/s*)( 12in :
2. [Pa _ [0S, /in) — ) = 353.05in/s (@
Yo, 0.001551b,,/in ft

The frequency w,,, required to compute the periods T is expressed in Equation (p) in Section 9.8.2 with
eigenvalues A\, = mm/10 and p, = ni/S withm, n=1,2,3,........ as shown in the same Section.

The mode shapes of this plate from free lateral vibration analysis is computed by the following

expression:

. MaX . N
Z(X, yat) = Amn KSIHWJ(SIH?W)(Am COsa‘a)mnt ) (9.81)
e L0 BT ETE (9.82)
n m3n37z_6
We realize thatm,n=1,2,3, ................ , and b= 10" and ¢=5" in both Equations (9.81) and (9.82).
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9.8.3 Numerical solution of the Partial Differential Equation for thin plate vibration-contd

e Graphical solutions of the first three (3) modes of free vibration of the thin plate
with m=n =1,2 and 3:

Modal analysis of plate vibration is a very important engineering analysis that relates to the safe design of this
type of structures because many such structures are expected to survive cyclic load applications. Such situation
is vulnerable to structural failures in resonant vibration should the frequency of the applied cyclic loads coincides
with any natural frequencies of the plate found in the modal analysis. Solutions for these natural frequencies of
plates of given geometry and material properties requires the solution of the shape of the deformed plates at
various modes, and it will also provide engineers with possible shapes of the plate under each of these modes of
vibration.

In-depth descriptions of resonant vibration and modal analysis of structures were presented in both Sections
8.7.2 and 8.9.

Natural frequencies of the plate illustrated in Figure 9.25 requires us to compute the amplitudes of the plate
z(x,y,t) in Equation (9.81) given below, with specific conditions as presented in Equations (a1,a2, b1, b2, c1 and

c2): 2(x,y,t) = Am(sinm—ng(sin—j(ﬁ\m cosam, t) (9.81)
Where the coefficients: A = 16(be) [ . :HJI D (9.82)
m’n’z
And the natural frequencies: Oy = A+ 17 = \/(%)2 +(n% 2 (9.83)
With: m,n=1,2,3, ................ , and b = 10" and c=5" in the above expressions.

Readers are reminded that for plate vibration analysis, Mode 1 vibration is obtained with m=n=1,
Mode2 vibration with m=n=2, and Mode 3 vibration with m=n=3 are used in the above formulations.
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9.8.3 Numerical solution of the Partial Differential Equation for thin plate vibration-contd

e Natural frequencies of the first three (3) modes of free vibration of the thin plate
with m=n =1,2 and 3:
We have obtained the expression of the amplitude of a plate, z(x,y,t) in a free-vibration analysis shown in
Equation (9.81), from which we may get the natural frequencies of the plate from the coefficient in the argumen

of the cosine function:“cos(aw,,,)t" in Equation (9.81). Hence the natural frequencies of the plate are: ald .,
with m=1,2,3,..... ,andn=1,23,........

z(x,y,t) = Ann(sinr?—ng(sinnTﬂyj(Amn cosam,, ) (9.81)
where A - 16(bc) 1+(—31 3"”61+(—1)'“+1 (9.82)
mnz
and @ = A+ pl = \/(%T +(nTEJ2 (P)
0.5 b, /in){32.2 ft/s*)( 12i
a= |79 _ ( f )( — ) 1210} _ 353.05in/s (d)
P 0.001551Ib_/in ft

We may compute the natural frequencies of the first 3 modes to be:

Mode 1 with m=n=1: 2 3
fh= aw11=353.05J (E) + (g) = 78.94 Rad /s

. 21 2 21 2
Mode 2with m=n=2:  f, = aw,,=353.05 [(3) + (%) = 157.88 Rad/s

2 2
Mode 3 with m=n=3: fz = 30)33=353-05\/(i—§) + (3?”) = 236.82 Rad /s
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9.8.3 Numerical solution of the Partial Differential Equation for thin plate vibration-contd

[ ]
0.51b. /in)(32.2 ft/s? i 9.81
P9 =\/(  /in) )(12'”j _35305in/s o)

a=.— - 2
P 0.001551b,, /in ft
16(be) [ (1) Jre (<) (9.82)
Am = m’n’z®
o =Tyt = [R] [ v
Z(X, y t) = Amn(sin—oj(sinn—j(Amn cosam,,t ) (d)

Modal shapes of thin plates require numerical solutions of z(x,y,t) of Equation (9.81) with
m=n=1,2,3, which is a very tedious job. It will also be a great deal of laborious efforts to
obtain graphical representations of these shapes. Consequently, we will use a commercially
available MatLAB software (version R2015) available at the author’s host university to
perform these computations and present the computed modal shapes of the plates in
graphs for the solutions.

An overview of this software will be described in Section 10.5.2 of Chapter 10 (p.376), with
inputs/output files for this analytical problem presented in Case 2 in Appendix 4 (P.473).

Graphical displays of the first two modal shapes of the thin plate with time t = 0, 1/8 and 1/4
seconds for Mode 1 (m=n=1) and Mode 2 with m=n=2 at t=1/8 and "2 seconds will be

shown in the next two slides.
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Modal ONE shapes of the thin plate at: (a) t=0, (b) t=1/8 second and (c) t=1/4 seconds

ene Figure 1 ece Figure 2
File Edit View Insert Tools Desktop Window Help > File Edit View Insert Tools Desktop Window Help -
Ddde h SO 4A-Q 08 =0 DSds b K409 E4-3 08 @

Shape of e pad st T= 0 saconss inMode | ‘Shapa of the pad st T = 0.125 seconds In Mode 1

ey
syttt et S
G SR SO SAAT
,,,,,,’,’;l}::,’:.: S sSININAY

S
S SRR
7 9:‘%‘001 SOLTRRAR

o

RIS
ALK R
G

S

(a) At t=0, peak at =0.16" (b) At t=1/8 second, peak at = 0.17 “

ece Figure3
File Edit View Insert Tools Desktop Window Help C

DSde » SS9 Q A 0E =D

Shape of the pad ot T =025 saconds in Mods 1

eSS SNan
,,r,,,';::"::o, ST

CSUTIS N
CSSoEIRY
X :“:“::“‘\\\:n‘@“ )
Setsiintipmna
ol et runna

84

(c) At t = 1/4 seconds, Peak at=0.14"



Modal TWO shapes of the thin plate at: (c) t=1/8 second and (d) t=1/4 seconds
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(c) At t=1/8 second, peaks at 0.0125 (d) At t=1/4 second, peaks at 0.03 *

These modal shapes provide engineers with possible shape changes of the plate in vibrations.
The illustrated shapes also indicate where the peak amplitudes of vibration of the flexible
plate would occur, from which the design engineer should take precaution for not placing
delicate attachments at these locations to avoid possible damages due to excessive
deformation of the plate structure.

The computed natural frequencies with: f,=78.94 rad/s, f,=157.88 rad/s and f; = 236.82 rad/s
will remind the potential users of this plate structure to avoid such frequencies when applying
intermittent loads in order to avoid the devastating resonant vibration of this thin plate.
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