San José State University Mechanical Engineering Department ME 147-01: Dynamic Systems Vibration and Control, Fall 2021

Course and Contact Information

Instructor	Professor Long Lu
Email Address	Long.Lu@sjsu.edu
Office Hours and Location	Tuesday and Thursday 9:30 AM-10:30 AM (Online via Zoom)
Class Days/Time/Location	Tuesday and Thursday 10:45 AM-12:00 PM (Online via Zoom)
Prerequisites	A grade of "C-" or better in ME 130 (undergraduate students only)

Course Format

The course relies on lecture materials presented in class, and students are strongly encouraged to attend.

Zoom Meeting Links and Course Materials

Zoom meeting links and course materials such as the syllabus, homework assignments and solutions,... will be available on Canvas. You are responsible for regularly checking Canvas to learn of any updates and announcements. For help with using Canvas, please see <u>Canvas Student Resources page</u>.

Course Description

Mathematical representation of dynamic systems. Damped and undamped free and forced vibrations of single and multi-degree of freedom systems. Vibration control and isolation. Dynamic analysis of control systems. Transient response, frequency response and the stability criteria. State-variables approach. Feedback and feed-forward compensation. Emphasis on engineering problems involving analysis and design.

Course Learning Outcomes

Upon successful completion of this course, students will be able to:

- 1. model and analyze simple vibratory systems
- 2. calculate transient and steady-state responses for a vibratory system
- 3. design a vibratory system to reduce amplitude of vibration and/or transmitted forces
- 4. analyze multi-degree of freedom systems to determine eigenvalues and eigenvectors
- 5. develop a mathematical model of a control system
- 6. analyze a control system to determine its transfer function and characteristic equation
- 7. predict system stability and performance
- 8. design controllers to meet stability and performance goals
- 9. determine the relative stability gain and phase margins of a control system
- 10. use modern computational tools such as MATLAB for analysis and design.

Textbooks and Additional References

Required Textbook

Dynamic Systems Vibration and Control by Dr. Fred Barez, Fall 2021, which will be available for order at Maple Press, 330 S. 10th Street, San Jose, CA 95112, and also available for online order. Link to order the textbook will be posted on the course Canvas site.

Additional References (Optional)

[1] Kelly, S. G. Fundamentals of Mechanical Vibrations. McGraw-Hill.

[2] Rao, S. S. Mechanical Vibrations. Prentice Hall.

[3] Dorf, R. C. and Bishop, R. H. Modern Control Systems. Prentice Hall.

[4] Nise, N. S. Control Systems Engineering. John Wiley & Sons, Inc.

[5] Ogata, K. Modern Control Engineering. Pearson.

Homework Assignments

Homework assignments are individual effort assignments. Students are encouraged to have intellectual discussions about the homework problems. However, all students must prepare and submit their own solutions to the homework problems which reflect their understanding and problem-solving methodologies. Any form of cheating or plagiarism will not be tolerated. Homework is typically assigned as a set and due to Canvas in one week. No late homework submissions will be accepted. Therefore, it is crucial that students regularly check Canvas for important class announcements. Please type or scan your homework and submit it as a PDF file to Canvas by the announced deadline.

Examinations

There will be two 75-minute midterm exams and one 135-minute final exam. The final exam will be comprehensive, covering all materials and topics presented in class. Please consult the class schedule for the exam dates and times. There will be no make-ups for missed exams, except for medical or other reasons outside the student's control, and such must be documented with a written notice and proof.

Grading Information

Course grade will be out of 1000 points total:

Homework	300 points
Midterm Exam 1	200 points
Midterm Exam 2	200 points
Final Exam	300 points

Total points

1000 points

Determination of Grades

There will be no curving of grades. Final grades will be based on the total points and assigned as follows:

- Total points \geq 970 points: A+
- 940 points \leq Total points < 970 points: A
- 900 points \leq Total points < 940 points: A-
- 850 points \leq Total points < 900 points: B+
- 800 points \leq Total points < 850 points: B
- 760 points \leq Total points < 800 points: B-
- 720 points \leq Total points < 760 points: C+
- 690 points \leq Total points < 720 points: C
- 650 points \leq Total points < 690 points: C-
- 620 points \leq Total points < 650 points: D+
- 590 points \leq Total points < 620 points: D
- 550 points \leq Total points < 590 points: D-
- Total points < 550 points: F

University Policies

Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Programs' Syllabus Information web page at http://www.sjsu.edu/gup/syllabusinfo/>.

Week/Dates	Discussions Topics/Class Activities	
Week 1	Welcome to ME 147	
Th 08/19		
Week 2	Principles of Newtonian Mechanics, Introduction to Vibrations, Degrees of	
T 08/24 & Th 08/26	Freedom, Equations of Motion, Free Vibrations	
Week 3	Natural Circular Frequency, Period of Oscillations, Energy Method, Damped	
T 08/31 & Th 09/02	Systems	
Week 4 T 09/07 & Th 09/09	Forced Vibrations, Undamped and Damped Vibrations, Transmissibility	
Week 5 T 09/14 & Th 09/16	Multi Degree of Freedom Systems, Eigenvalues and Eigenvectors	
Week 6	Review for Midterm Exam 1 on Tue 09/21	
T 09/21 & Th 09/23	Midterm Exam 1: 10:45 AM-12:00 PM on Thu 09/23	
Week 7	Vibratian Isolatian Vibratian Absorbars Design for Vibratian Control	
T 09/28 & Th 09/30	Vibration Isolation, Vibration Absorbers, Design for Vibration Control	
Week 8	Distributed Parameter Systems, Wave Equations, Solutions to Wave	
T 10/05 & Th 10/07	Equations	
Week 9	Flow-Induced Vibrations	
T 10/12 & Th 10/14		
Week 10	Introduction to Control, Mathematical Modeling of Physical Systems,	
T 10/19 & Th 10/21	Open-Loop and Closed-Loop Systems	
Week 11 T 10/26 & Th 10/28	Transfer Functions, Poles and Zeros, System Stability Analysis	
Week 12	Review for Midterm Exam 2 on Tue 11/02	
T 11/02 & Th 11/04	Midterm Exam 2: 10:45 AM-12:00 PM on Thu 11/04	
Week 13 T 11/09 & Th 11/11	Routh-Hurwitz Criterion, Time Domain Analysis, Transient and Steady-State	
	Responses	
	No class on Thu 11/11 (Veteran's Day)	
Week 14	Controller Types, Controller Design, State-Variable Method, General Form of	
T 11/16 & Th 11/18	the State Variable Equations, Solution of State Equations	
Week 15	Frequency Analysis, Nyquist Stability Analysis	
T 11/23 & Th 11/25	No class on Thu 11/25 (Thanksgiving Holiday)	
Week 16	Bode Diagrams, Gain and Phase Margins, Bandwidth, Root Locus	
T 11/30 & Th 12/02	Review for Final Exam on Thu 12/02	
Final Exam Week		
Th 12/09	Final Exam: 9:45 AM-12:00 PM on Thu 12/09	

ME 147 Dynamic Systems Vibration and Control Fall 2021 Tentative Course Schedule/Outline