
3 Learning How To Multiply!

For the start, let us build perhaps the simplest ANN, one that is tasked to learn how to multiply

two numbers between 0 and 1 through observation of examples only! That means, we are going to

generate a large number of (few thousand) random float pairs between 0 and 1, multiply them to

get the answers (also called “labels”), and then show all of these to a simple fully-connected (FC)

neural network we build in Keras. Hopefully, our network learns what to do (how to multiply two

such numbers). To test that, we generate another, maybe smaller, set of random floats and test the

network with them (this can happen during the training), making sure it has not simply memorized

all the numbers, and their products, we provided during training.

Follow the algorithm below to develop a Keras script for building and training an ANN to do this

task. Then examine what the simplest network architecture that can do this job is.

We begin by importing numpy as np and using np.random.random(size=...) to generate the data

set of random numbers and products you need for training/testing. We then store them in proper

arrays, e.g., X train, Y train, X test, and Y test. Here, X... and Y... hold the input to our

neural network (the two numbers) and the desired output (their product), respectively. These arrays

do not have to have the same exact shape, of course, but hold an example in each row, i.e., each row

in X... contains two input numbers, and each element (row) of Y... is their corresponding product.

import numpy as np

N = 10000

X = np.random.random(size=[N,2])

Y = X[:,0] * X[:,1]

X train = X[:8*N//10,:]

Y train = Y[:8*N//10]

X test = X[8*N//10:,:]

Y test = Y[8*N//10:]

In this example, we are keeping 80% of the data we produce as training data and 20% of it as testing

data. Next, we set our network parameters,

N in = 2

5



N hid = 3

N out = 1

where N in is the number of neurons (perceptrons) in the first (input layer), N hid represents the

number of neurons in a middle (hidden) layer, and N out is the number of outputs we expect from

the network, which is simply one in this case. Next we need to build the ANN model using Keras

functions:

model = Sequential()

model.add(Dense(N hid, input dim=N in, activation=’sigmoid’))

model.add(Dense(N out, activation=’sigmoid’))

The first command above sets up a “Sequential” ANN, meaning that you feed the network in the

input layer and the information propagates forward to the output layer in a sequential manner. The

next set of commands specify the FC (“Dense”) layers. The last one of these is always the output

layer, and you can have zero, one, or more than one, hidden layer(s) in between. Here, our ANN

is shallow and really simple with only one hidden layer containing three perceptrons. The sigmoid

activation function at the output layer guarantees the output (the desired product of two numbers

between 0 and 1) is a number between 0 and 1. You can add the following command,

model.summary()

which prints out the summary of trainable parameters in the ANN you have constructed. Next comes

setting parameters related to the optimization (training), which is done using the compile command:

model.compile(loss=’mean absolute error’, optimizer=’adam’, metrics=[’accuracy’])

Di↵erent options for how the loss function (the quantity that is minimized during training) is

defined, the optimizer, and the way the measure for success is defined can be found in Keras’s

websites at https://keras.io/api/losses/, https://keras.io/api/optimizers/, and https:

//keras.io/api/metrics/.

Next, the fit function does the actual optimization/training given the model and the choice of other

parameters

history = model.fit(X train, Y train, validation data = (X test,Y test),

epochs=100, batch size=100)

6



Here, an epoch is when the network has seen all the training data once. We usually perform many

epochs in a given training session as the optimization is done stochastically. The batch size is the

amount of data seen by the ANN before an adjustment to its parameters is done. Running this

command produces information about the training progression, which you can then plot using the

variable history:

import matplotlib.pyplot as plt

plt.plot(history.history[’acc’])

plt.plot(history.history[’val acc’])

plt.title(’Model accuracy’)

plt.ylabel(’Accuracy’)

plt.xlabel(’Epoch’)

plt.legend([’Train’, ’Test’], loc=’lower right’)

plt.show()

plt.plot(history.history[’loss’])

plt.plot(history.history[’val loss’])

plt.title(’Model loss’)

plt.ylabel(’Loss’)

plt.xlabel(’Epoch’)

plt.legend([’Train’, ’Test’], loc=’upper right’)

plt.show()

If everything looks good, the loss has saturated to a minimum value and the accuracy is close to

100%, we can proceed by testing our trained ANN with another newly generated data set:

N = 1000

X = np.random.random(size=2*N).reshape(N,2)

Y = X[:,0]*X[:,1]

y pred = model.predict(X)

plt.plot(Y,y pred,’o’,markersize=2)

plt.plot([0,1],[0,1],’r-’,linewidth=3)

plt.xlabel(’Actual Product’, fontsize=25)

plt.ylabel(’Network Prediction’, fontsize=25)

plt.show()

7


