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We present a time-dependent model for homogeneous nucleation and derive a time-dependent
solution to the coupled growth-rate equations for molecular cluster concentrations. A correction to
the monomer concentration growth-rate equation is applied, which accounts for the gain and loss of
molecules by all cluster populations. The condensation rate used considers all embryos to be in
motion, rather than assuming that only the monomers move. In order to allow for size-dependent
variations in a cluster’s surface tension, the evaporation rate incorporates the revised
parametrization of Laaksonenet al. @Phys. Rev. E49, 5517~1994!# of the homogeneous nucleation
theory of Dillmann and Meier@J. Chem. Phys.94 3872 ~1991!#. Eigenvalue analysis illuminates
how the steady-state is approached from the transient period and allows us to estimate the accuracy
of a steady-state approximation. It is shown that the distributions of clusters predicted by this theory
generate nucleation currents that are more accurate than those produced by other steady-state cluster
distributions. More importantly, this model can be used to calculate the time-dependent cluster
behavior for any nucleation model that has an expression for the change in Gibbs free energy. The
theory agrees well with the experimental data of Milleret al. @J. Chem. Phys.78, 3204~1983!# and
Viisanenet al. @J. Chem. Phys.99 4680~1993!#, and with the theoretical predictions of Laaksonen
et al. © 1996 American Institute of Physics.@S0021-9606~96!01901-5#

I. INTRODUCTION

Nucleation is the thermodynamic molecular process that
initiates many phase transitions. We observe nucleation
events on a day-to-day basis, some examples being cloud
creation ~the formation of liquid droplets within a vapor!,
making ice~the formation of solid crystals within a liquid!,
and boiling water~the formation of gaseous bubbles within a
liquid!. There is a strong motivation to study nucleation be-
cause phase transitions are pervasive in many important
physical phenomena. In homogeneous nucleation, the nucle-
ating substance and its environment are assumed pure; there
are no foreign particles, such as dust, wall surfaces, or ions,
that can serve as sites for the onset of the phase change.
Consequently, of all the nucleation theories, homogeneous
nucleation is the simplest. Its simplicity does not undermine
its significance, however, as its concepts are applied by many
theorists to explain more complicated processes.

The classical approach to homogeneous nucleation was
originated and developed by Becker and Do¨ring,1 Farkas,2

Frenkel,3 Volmer and Weber,4 and Zeldovich;5 an excellent
two-part review is given by McDonald.6,7 The theory focuses
on the vapor-to-liquid phase transition and attempts to calcu-
late the time-independent rate of droplet formation within a
given volume of vapor; this rate is called the steady-state
nucleation current. Molecular clusters are allowed to change
size only by gaining and losing single molecules~monomers!
by condensation and evaporation. It is important to note that
for a vapor-to-liquid transition, homogeneous nucleation will
take place only if the vapor is supersaturated. In other words,
the ratio of the vapor pressure to the saturation vapor pres-
sure must be greater than one; this ratio is called the super-
saturation ratio, and the saturated vapor pressure is defined as
the pressure of a saturated vapor over a plane liquid surface.

Thermodynamically, the growth of a droplet is assumed
to be governed by the change in Gibbs free energy, which
classically has two terms: the first is the bulk energy of liquid
phase formation, which is negative and varies as the drop-
let’s volume; the second is the surface free energy, which is
positive and varies as the droplet’s surface area. For very
small molecular clusters, the surface energy dominates the
bulk energy, but for larger clusters the bulk energy becomes
dominant. Therefore, the Gibbs free energy curve is initially
steep and increasing, but as a molecular cluster~an embryo!
grows, the curve reaches a maximum and then decreases, the
rate of descent growing as the cluster gets larger~Fig. 1
depicts a modified version of this curve!. Because a thermo-
dynamic system will spontaneously tend to go to the lowest
Gibbs free energy state, the maximum in the curve serves as
an activation barrier. Unless an embryo becomes large
enough to overcome this barrier, it will tend to decrease its
Gibbs free energy by losing molecules by evaporation. The
cluster size at which the activation barrier occurs is called the
critical size. Because the Gibbs curve is at a maximum, the
critically sized cluster is at an unstable equilibrium with re-
spect to the supersaturated vapor. In other words, the vapor is
saturated with respect to the surface of the embryos at the
critical size. Furthermore, the vapor is supersaturated with
respect to the surfaces of supercritically sized clusters and
subsaturated with respect to the surfaces of subcritically
sized clusters. This explains the tendency of supercritical
embryos to grow and subcritical embryos to shrink.

The classical theory of homogeneous nucleation uses the
Gibbs free energy to calculate the time-independent distribu-
tion of embryos for a supersaturated vapor constrained to be
in complete thermodynamic equilibrium; this is called the
‘‘balanced steady state’’ and is characterized by a steady-
state nucleation current equal to zero. The constrained equi-
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librium distribution of embryos is a mathematical artifice.
The balanced steady state is nonphysical for a supersaturated
vapor because a supersaturated vapor is not in complete ther-
modynamic equilibrium and, therefore, produces a nonzero
current.

Simple kinetic arguments are employed by the classical
theory to obtain a time-independent rate of the number of
monomers condensing onto a motionless embryo. This con-
densation rate is combined with the constrained equilibrium
distribution to derive the rate at which molecules evaporate
from a given cluster. The classical theory then applies the
condensation and evaporation rates to derive the size-
dependent currents, each of which is the net number of em-
bryos becoming one molecule larger in a given time and
volume. These currents represent the total flow of embryos
between concentrations of molecular clusters.

At this point in the classical theory two crucial assump-
tions are made. The first assumption is that a steady-state
period exists during nucleation in which the concentrations
of equally sized embryos remain constant. Consequently, the
currents between the embryo concentrations must all have
equal magnitudes; a concentration of clusters could not be
constant if the rate of embryos flowing ‘‘in’’ were not equal
to the rate flowing ‘‘out.’’ The distribution of cluster concen-
trations during the steady-state period is called the steady-
state distribution. Since the currents all have the same mag-
nitude, they lose their size dependence and are considered to
be the steady-state current. This steady-state current is taken
to be the nucleation rate. The second assumption is that the
time it takes for the embryo concentrations to initially grow
and form the steady-state distribution is negligible when
compared to the steady-state period; this initial period of
time is called the transient period. Thus, the entire homoge-
neous nucleation process is modeled with only the steady-
state period in consideration.

Removing the time dependence of the cluster concentra-

tions considerably simplifies the mathematics of the classical
theory. When the previous two assumptions have been made,
it is not difficult to obtain the value of the steady-state nucle-
ation current. The classical theory usually concludes with
this calculation.

At first, experimentalists found the agreement between
the classical theory and experiment to be generally good.8–10

Unfortunately, they were not measuring nucleation rates;
they were measuring the supersaturation ratios at which the
steady-state current was equal to one droplet formed per cu-
bic centimeter per second. The classical theory agreed with
these measurements. In the last two decades, however, it has
become possible to measure actual nucleation rates. New ex-
perimental data11–13has shown that in the case of water, the
classical theory’s agreement is limited to small currents. As
the currents and supersaturation ratios become larger in mag-
nitude, the theoretical agreement worsens, the predictions be-
ing consistently too high. Furthermore, the observed tem-
perature dependence of nucleation rates is weaker than that
which is predicted.

There are many possible shortcomings in the classical
theory of homogeneous nucleation, and the motivation to
find a more suitable approach is clear. One such defect is the
omission of the transient period. By assuming this time to be
insignificant, and thereby immediately placing the embryos
into their steady-state distribution, one cannot obtain time-
dependent expressions for either the cluster concentrations or
the currents between them. Using a nonclassical semiphe-
nomenological approach, Laaksonenet al.14 developed a re-
vised version of the steady-state nucleation rate theory of
Dillmann and Meier15 that agrees with experimental data for
many different substances over a wide range of temperatures.
As with the classical theory, however, they have not pro-
duced an expression that includes the time dependence of the
individual cluster concentrations. The utility of considering
this time evolution has been demonstrated by Abraham16 and
Wilcox and Bauer.17Abraham found that during the transient
period, the currents between concentrations of embryos
smaller than the critical size were at times much larger than
the steady-state current; these currents significantly changed
in magnitude even when the corresponding concentrations
were almost steady. Neither he nor Wilcox and Bauer ob-
tained time-dependent expressions, however, but generated
time evolution plots by numerically integrating the necessary
growth-rate differential equations.

In this paper, it is our goal to present a time-dependent
expression for cluster concentrations within the context of
homogeneous nucleation. The theoretical derivation is gen-
eral and may be applied to different substances. We incorpo-
rate the kinetic theory of dilute vapors to obtain a condensa-
tion rate that assumes all of the embryos are in motion; this
is in contrast to the standard technique of assuming that only
the monomers move. The Laaksonenet al. reparametrization
of the Dillmann and Meier homogeneous nucleation theory
is then employed to derive the evaporation rate. Using the
conservation of mass, we correct the standard monomer con-
centration growth-rate equation, which can be shown to be
erroneous. Finally, the entire system of cluster concentration

FIG. 1. The Gibbs free energy, as modified by Laaksonenet al. ~Ref. 14!, is
compared with the rates of condensation and evaporation for water vapor
having a supersaturation ratio of 10.52 at 248.45 K.
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growth-rate equations is solved using matrix methods.
The advantages of this time-dependent approach are

many. This model allows us to calculate the time-dependent
behavior of embryos for almost any homogeneous nucleation
theory; an expression for the change in Gibbs free energy is
all that is required. We are able to predict how many em-
bryos of a particular size are present at a given time for any
supersaturation ratio and temperature. It then becomes clear
how the thermodynamic system approaches the steady-state
from its transient period of growth. Furthermore, the time-
dependent expressions allow us to determine the relative ac-
curacy of the steady-state approximation, and to calculate
when each individual embryo number concentration slows its
growth enough to be considered steady. The predicted nucle-
ation currents are in excellent agreement with experimental
data and the results predicted by Laaksonenet al.14

II. DERIVING THE RATES OF CONDENSATION AND
EVAPORATION

We begin our analysis of the nucleation of droplets by
restricting the ways which a molecular cluster may increase
or decrease in size. During nucleation the number of mono-
mers in the supersaturated vapor is significantly larger than
the total number of clusters~dimers, trimers, etc.!. It is rea-
sonable then to assume that the only way a cluster becomes
larger or smaller is by gaining or losing single molecules. Let
x be a discrete variable representing the number of molecules
in an embryo. An embryo consisting ofx molecules~an ‘‘x-
mer’’! is denotedAx . It increases its size by gaining a single
moleculeA1 ,

Ax1A1→Ax11 , ~1!

and decreases its size by losing a molecule,

Ax→Ax211A1 . ~2!

Of course, it is possible for anx-mer to absorb a dimer,
trimer, or any other embryo; the frequency of such an event,
however, is negligible compared to monomer absorption. As-
suming that only binary collisions take place is essentially
the same as assuming that the supersaturated vapor is dilute.
~Even for a supersaturation of 10.52 and a temperature of
248.45 K, which corresponds to a nucleation rate of 100
million droplets/cc/sec,13 the maximum cluster diameter is
only 6.5% of the mean molecular spacing of monomers
within the vapor.! Reactions~1! and ~2! are starting points
for many theoretical approaches to homogeneous nucleation.
It has been suggested that the formation of dimers involves
three molecules, as opposed to two;18 the involvement of the
third molecule is a consequence of the conservation of en-
ergy and momentum. This use of an additional reactant
might also be necessary for slightly larger clusters;17 how-
ever, it is most likely to be a neutral component, such as a
carrier gas molecule. For the sake of simplicity, we will
maintain the assumption that clusters grow and shrink only
by gaining and losing monomers.

An x-mer gains and loses molecules by condensation
and evaporation. The rates at which molecules condense onto
and evaporate off of anx-mer in a given time interval are
denotedcx andex , respectively.

We use four fundamental assumptions to obtain a nu-
merical expression forcx . First, we assume that allx-mers
are spherical; this approximation naturally loses accuracy as
the embryos get smaller. Second, we attribute the density of
the liquid phase,r, to each of thex-mers. These two assump-
tions can be summarized by the equation

4
3 pr x

3r5m1x, ~3!

wherem1 represents the mass of one molecule andr x repre-
sents the radius of thex-mer. The third and fourth assump-
tions are that the number of monomers per unit volume,n1 ,
and the temperature of the vapor,T, are constant during the
nucleation period. Of course, the monomer concentration
must be depleted for molecular clustering to take place, but
we assume that this depletion is insignificant.

We obtain the condensation rate by evaluating the rate of
molecular collisions using the kinetic theory of dilute vapors.
This approach is advantageous because all embryos are con-
sidered to be in motion.~The classical treatment of conden-
sation assumes that the embryos are suspended at rest in the
vapor, with the monomers being the only moving bodies.!
We treat the vapor as a gas mixture, each gas containing all
of the embryos which have the same number of molecules. If
a collision between a monomer and anx-mer occurs, the
distance between the centers of the two,r x1, must be

r x15r x1r 1 . ~4!

Using Eq.~3!,

r x15S 3m1x

4pr D 1/31S 3m1

4pr D 1/35S 3m1

4pr D 1/3~x1/311!. ~5!

Envision a shell with radiusr x1 surrounding thex-mer.
Whenever the center of a monomer intersects this shell, the
x-mer and monomer collide. The cross-sectional area of the
shell is the total collision cross section and is denoted by
ax1, where

ax15pr x1
2 . ~6!

Consider anx-mer moving with velocitynx through a vapor
of randomly moving monomers. Given the monomer number
density at timet, n1(t), a small numberDn1(t) will have
velocities within the interval@n,n1Dn#. We choose a refer-
ence frame in which these monomers are at rest and the
x-mer has the relative velocitynr x1, where

nr x15nx2n. ~7!

In timeDt, thex-mer, moving with velocitynr x1 and having
the total collision cross sectionax1, sweeps out a cylinder of
volumeax1n r x1Dt. The chance that anx-mer moving with
velocity nx collides with a monomer having a velocity in the
range@n,n1Dn# is Dn1(t)ax1n r x1Dt. This corresponds to a
collision frequency off n(t),
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f n~ t !5Dn1~ t !ax1n r x1. ~8!

The total collision frequency, which is the mean rate of col-
lisions between thex-mer and the monomers, is obtained by
summingf n(t) over all of the possible monomer speeds:

f x1~ t !5(
n

f n~ t !

5(
n

Dn1~ t !ax1n r x1

5n1~ t !ax1(
n

Dn1~ t !

n1~ t !
n r x1. ~9!

Note thatDn1(t)/n1(t) is the fraction of monomers having a
velocity in the range@n,n1Dn#, so the summation in the last
term of Eq.~9! is equal to the mean value ofn r x1. Thus,

f x1~ t !5n1~ t !ax1^n r x1&. ~10!

One of our fundamental assumptions was that the number
density of monomers was time independent,

n1~ t !'n1~0!. ~11!

This assumption removes the time dependence from the total
collision frequency, hence

f x15n1~0!ax1^n r x1&. ~12!

From basic kinetic theory for a hard-sphere molecule gas at
equilibrium,19

^n r x1&5S 8kTpmr
D 1/2, ~13!

wheremr is the reduced mass,

mr5
m1mx

m11mx
5
m1~xm1!

m11xm1
5

xm1

11x
. ~14!

Using Eqs.~5!, ~6!, ~12!, ~13!, and ~14!, we obtain a useful
expression of the total collision frequency,

f x15bn1~0!~x1/311!2S x11

x D 1/2, ~15!

where

b[S 3m1

4pr D 2/3S 8pkT

m1
D 1/2. ~16!

Let us define the sticking coefficientfx as the probability
that a monomer hitting anx-mer sticks to it. The product of
fx and f x1 yield a rate at which monomers hit and stick to an
x-mer; this is the condensation ratecx ,

cx5fxbn1~0!~x1/311!2S x11

x D 1/2. ~17!

We will assume thatfx is equal to unity, so all molecules
that collide with an embryo stick to it.

One might be opposed to treating the supersaturated va-
por as being at equilibrium in the derivation of Eq.~13!.
When a vapor is in an equilibrium state the number of mol-

ecules in any velocity class is time independent, so during
the steady-state period, when fluctuations of the embryo con-
centrations are small, the vapor is at a quasiequilibrium. In
fact, we have already assumed a quasiequilibrium by assign-
ing a single temperature to the vapor.

In the spirit of Katz and Wiedersich,20 we derive the
evaporation rateex by considering the equilibrium number
density ofx-mers,nx

E, in a saturatedvapor. This approach
differs from the classical theory, which invokes asupersatu-
rated vapor constrained to be in equilibrium.

The equilibrium concentration forx-mers is usually writ-
ten in the form

nx
E5n1

E expS 2DGx

kT D , ~18!

whereDGx is the change in the Gibbs free energy of forma-
tion of anx-mer. The net flow of embryos per unit time per
unit volume from thex-mer concentration,nx(t), to the (x
11)-mer concentration,nx11(t), is defined as the nucleation
current,I x(t),

I x~ t ![cxnx~ t !2ex11nx11~ t !. ~19!

Homogeneous nucleation cannot occur in a saturated vapor,
which is in equilibrium with a plane surface of the liquid
phase; this means essentially that the critically sized cluster
within a saturated vapor must be infinitely large. Hence, the
number densities ofx-mers are time independent and the
nucleation currents between the concentrations of embryos
are equal to zero. Using Eq.~19!,

05cx
~S51!nx

E2ex11nx11
E , ~20!

wherecx
(S51) corresponds to the condensation rate of a satu-

rated vapor. The evaporation rate is then simply expressed as

ex5cx21
~S51!

nx21
E

nx
E . ~21!

Using Eq.~18!,

ex5cx21
~S51! expS DGx2DGx21

kT D . ~22!

It remains to obtain formulas for the Gibbs free energy
terms in Eq.~22!. There have been many theoretical ap-
proaches to determining the Gibbs free energy of a homoge-
neously nucleating embryo,21 however, an expression that
works for all substances under all possible conditions has not
yet been found. We choose to use an approach developed by
Ford et al.22 and Laaksonenet al.14 in which the Dillmann
and Meier theory is revised; this method agrees with experi-
mental data forn-nonane, water, and the lower alcohols. In
brief, we will derive the Fordet al. expression for steady-
state cluster populations, impose a condition posed by Laak-
sonenet al., and apply this modified expression to a satu-
rated vapor. The result will be combined with a condensation
rate in order to obtain the evaporation rate.

We begin by using an expression for the equilibrium
population of clusters within a supersaturated vapor,15
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Nx
E5expS 2Kxux

2/32t ln x1 ln~q0V!1x
Dm

kT D . ~23!

The functionKx describes the surface energy deviations of
an x-mer from the surface energy of a macroscopic liquid
droplet; t and q0 are parameters related to the configura-
tional effects of the embryo as well as its rotational, vibra-
tional, and translational degrees of freedom; the termu is
given by

u[
s

kT S 6m1~p!1/2

r D 2/3, ~24!

in which s is the surface tension of a macroscopic liquid
droplet at temperatureT, V is the volume occupied by the
vapor, andDm is the difference between the chemical poten-
tials of a supersaturated and saturated vapor. Assuming that
the partial pressure of the monomers is approximately equal
to the total vapor pressure, we can express this difference in
chemical potentials as23

Dm'kT ln~S!1B~p2p`!1O~S2!, ~25!

where the last term denotes truncation error andB is the
second virial coefficient from the virial equation of state, in
the form

pV Y(
i51

`

iNi
E5kT1(

j51

`

Bjp
j21. ~26!

Using Eqs.~23! and ~25!, we obtain an expression for the
equilibrium cluster populations,

Nx
E5Sx expS 2Kxux

2/32t ln x1 ln~q0V!

1x
B~p2p`!

kT D . ~27!

In order to obtain an expression forKx , the surface energy
modification, we will use a truncated form of the virial equa-
tion of state,

pV

N1
E12N2

E'kT1Bp. ~28!

This may be rewritten as

kT1Bp'
pV

N1
E@112~N2

E/N1
E!#

'
pV

N1
E @122~N2

E/N1
E!#.

~29!

Substituting Eq.~27! into Eq. ~29!, and using the fact that

Bp

kT
!1, ~30!

we reexpress the virial equation of state as

kT1Bp'
p`

q0
expSK1u1

Bp`

kT D F12
Bp

kT
2S

3expS u~K12K22
2/3!2~t21!ln 22

Bp`

kT D G .
~31!

Compare terms to obtain the values ofK1 andK2 :
14

K15
21

u F lnS p`

q0kT
D1

Bp`

kT G ~32!

and

K25
21

u22/3
lnF2Bp`

kT
2t expS 2K1u1

Bp`

kT D G . ~33!

Kx is expanded in powers ofx21/3 ~which corresponds to
1/r x!

Kx511a1x
21/31a2x

22/3, ~34!

wherea1 anda2 are determined by Eq.~34! for x equal to 1
and 2,

a15
~K22K12

22/3!1222/321

221/32222/3 , ~35!

and

a25K1212a1 . ~36!

Note thata1 is independent of the quantityq0 , since

K22K12
22/35

21

u22/3 F lnS 2Bp`

kT
2tD2

Bp`

kT G
'

21

u22/3
lnS 2Bp`

kT
2tD . ~37!

This q0 independence was first noted by Fordet al.22 Ne-
glecting the second virial coefficient term in Eq.~27!, as it is
numerically insignificant@Eq. ~30!#, we obtain Fordet al.’s
expression for the equilibrium population ofx-mers,

Nx
E5N1

E exp$2u@x2/31a1x
1/32~a111!#

2t ln x1~x21!ln S%. ~38!

Laaksonenet al.14 consideredt in Eq. ~38! to be a theo-
retical free parameter, removing its original dependence15 on
experimentally measurable values; they determined that set-
ting t equal to zero produced the best fit with nucleation data
for n-nonane, water, and the lower alcohols. Thus we arrive
at their expression for the change in anx-mer’s Gibbs free
energy by considering Eq.~18!,

DGx
~L !5kTu@x2/31a1x

1/32~a111!#2kT~x21!ln S.
~39!

We now obtain the evaporation rate by combining Eqs.
~39! and ~22! with the saturation ratio equal to one,

ex5cx21
~S51! exp$u@x2/32~x21!2/3

1a1x
1/32a1~x21!1/3#%, ~40!

where, using Eq.~17!,

cx21
~S51!5fx21b@n1

~S51!~0!#@~x21!1/311#2S x

x21D
1/2

.

~41!

Equations~41! and ~17! require formulas for the initial
monomer concentrations of a saturated and supersaturated
vapor; these can be obtained using Eqs.~27! and ~32!,
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n1~0!5
p

kT S 11
Bp

kTD . ~42!

Note thatex is independent of the supersaturation ratio of the
nucleating vapor, but is sensitive to the embryo size, vapor
temperature, and surface tension@see also Eq.~24! for sur-
face tension and temperature terms withinu#. ex is also un-
defined forx51, as it should be, since a monomer cannot
evaporate.

The relationship ofcx andex to the Gibbs free energy is
shown in Fig. 1. Note that the condensation and evaporation
rates are equal when the free energy curve reaches its maxi-
mum; the cluster size at which this occurs is denoted the
critical size,xC . Forx-mers smaller than the critical size, the
slope of the Gibbs free energy curve is positive; accordingly,
the evaporation rate dominates over the condensation rate.
On the other hand, forx-mers larger than the critical size, the
slope of the Gibbs free energy curve is negative and the
condensation rate dominates over the evaporation rate. This
behavior is in agreement with the fact that thermodynamic
systems tend to spontaneously assume the lowest possible
state of Gibbs free energy. Embryos smaller than the critical
size tend to shrink by evaporation while those larger than the
critical size tend to grow by condensation.

III. DISCUSSION OF THE EMBRYO GROWTH-RATE
EQUATIONS WITH A CORRECTION FOR THE
MONOMERS

Having deduced the mechanisms by which a cluster in-
creases and decreases in size, we can derive the growth-rate
equation for the concentration ofx-mers at timet, nx(t). An
x-mer is created when either an (x21)-mer grows by con-
densation or when an (x11)-mer shrinks by evaporation.
However, anx-mer is destroyed when it grows by conden-
sation or shrinks by evaporation. Hence,

d

dt
nx~ t !5cx21nx21~ t !2~cx1ex!nx~ t !

1ex11nx11~ t ! for x>2, ~43a!

where the first and third terms on the right represent the
inflow of clusters enteringnx(t) ~x-mer creation! while the
second term on the right represents the outflow~x-mer de-
struction!. Note that this is a simple inflow-outflow ordinary
differential equation for the time rate of change of each em-
bryo concentration~dimers, trimers, etc.!. It is convenient to
reexpress this growth-rate equation using the definition of
the nucleation current, Eq.~19!,

d

dt
nx~ t !5I x21~ t !2I x~ t ! for x>2. ~43b!

The entire nucleating system~except the monomers! can
be represented by a set of coupled differential equations in
the form of Eqs.~43a! or ~43b!. This set has a lower bound,
the dimer concentrationn2(t); the growth rate equation for
the monomer concentration will be addressed later. Because
of the forward coupling in Eq.~43a!, we cannot mathemati-
cally solve the coupled set unless it has an upper bound, i.e.,

a maximum finite value for the cluster sizex. A common
technique is to choose some size,G, that is about twice the
critical size; clusters having this many molecules are as-
sumed to simply keep growing, assuming a negligible chance
to shrink from evaporation. Some treatments effectively re-
move theG-mers from the system by invoking the Szilard
boundary condition, in which theG-mer population is set to
zero, decomposed into separate molecules, and then inserted
back into the monomer population.7

Another approach is to defineG as an absorbing state,24

in which case embryos are not allowed to leave thenG(t)
concentration once they have entered it,

cG5eG50. ~44!

By settingcG equal to zero, the absorption condition termi-
nates the forward coupling of the growth-rate equations, giv-
ing them an upper bound,

d

dt
nG~ t !5cG21nG21~ t !. ~45!

The absorbing state is assumed to be so large that its em-
bryos will just keep growing, thuseG is set equal to zero.
This method differs from the Szilard method because the
G-mers remain in the system, they are not removed. Note
that both methods treat thenx,G(t) populations in the same
manner. The growth-rate equation fornG21(t) has no con-
tribution from theG-mers,

d

dt
nG21~ t !5cG22nG22~ t !2~cG211eG21!nG21~ t !.

~46!

In this study we decided to use the absorbing state
method for two reasons. First, by not setting the number of
G-mers to zero, we can check that our model is conserving
mass by confirming that the total number of molecules re-
mains constant. Secondly, the absorbing state method is ad-
vantageous because it allows us to determine approximately
when the firstG-mer is formed.

The formation of the firstG-mer is important because it
occurs at the maximum time for which the growth rate equa-
tions are completely accurate. As long as there are no
G-mers, Eq.~46! is physically realistic. However, as soon as
the first cluster occupies the absorbing state there is a chance
that it will lose a molecule by evaporation. This probability
is smaller than the chance of growth by condensation, but it
should not be neglected, regardless of the absorption condi-
tion, Eq. ~44!. In fact, the difference betweene2 and c2 is
usually much larger than that betweencG andeG ~if they are
not set to zero!, yet we do not considerc2 negligible because
embryos would be unable to grow beyond the dimer state
~see Fig. 1!. Therefore, once the absorbing state is first popu-
lated, Eq.~46! loses accuracy since it lacks the evaporation
contribution tonG21(t) from theG-mers. Consequently, the
calculated growth rate fornG21(t) is smaller than its true
value. This causes the calculated value of the (G21)-mer
concentration to also be smaller, and the error propagates to
all of the embryo concentrations through the backwards cou-
pling of the growth-rate equations~43a!. It has been shown,
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however, that the nucleation rate is only slightly affected by
the value chosen forG;7 therefore the inaccuracy in the
growth-rate equations is small, and we will use the absorp-
tion condition, Eq.~44!, regardless of the slight error. Note
that the Szilard boundary condition also introduces this inac-
curacy by settingnG(t) to zero.

One might be tempted to keepeG equal to its calculated
value, instead of setting it to zero, in order to maintain the
accuracy of thenG21(t) concentration. This, however, pro-
duces significant errors into the model, resulting in negative
currents which deter the concentrations from their steady
state. In other words, the unrealistically largeG-mer concen-
tration causeseGnG(t) to dominatecG21nG21(t), and thus
I G21(t),0. From Eq.~28! we see that this causesnG21(t)
to grow, and the inaccuracy propagates to the other embryo
concentrations.

We mentioned earlier that the growth-rate equations
~43a! and~43b! do not apply to the monomer concentration,

d

dt
n1~ t !Þe2n2~ t !2c1n1~ t ! ~47a!

and

d

dt
n1~ t !Þ2I 1~ t !. ~47b!

If a cluster can only change size by gaining or losing single
molecules, then the time rate of change of the monomer con-
centration must depend on the concentrations of all the clus-
ter sizes; if there arec2n2(t) dimers becoming trimers every
second, then there are alsoc2n2(t) monomers depleted per
second. This is best illustrated by Fig. 2, which indicates that

d

dt
n1~ t !5e2n2~ t !2c1n1~ t !1 (

i51

G21

ei11ni11~ t !2cini~ t !,

~48a!

or, using Eq.~19!,

d

dt
n1~ t !52I 1~ t !2 (

i51

G21

I i~ t !. ~48b!

The time rate of change of the monomer concentration can
be derived in a more quantitative manner by considering the
conservation of mass. LetQ be defined as the total number
of molecules in the closed nucleating system,

Q[V(
i51

G

ini~ t !, ~49!

whereV is the volume occupied by the system. Since the
system is closed, the total number of molecules,Q, is con-
stant:

d

dt
Q505V(

i51

G

i
d

dt
ni~ t !. ~50!

We can solve this expression for the monomer growth rate,

d

dt
n1~ t !52(

i52

G

i
d

dt
ni~ t !, ~51!

and then use Eq.~43b!,

d

dt
n1~ t !522@ I 1~ t !2I 2~ t !#23@ I 2~ t !2I 3~ t !#

24@ I 3~ t !2I 4~ t !#2•••2I G21~ t !. ~52!

Combining terms, we obtain Eq.~48b!.
The correction to the monomer growth rate equation is

significant for two reasons. First, because of the coupling in
the growth-rate equations~33a!, all of the embryo concentra-
tions depend on the monomer concentration; an error like
that suggested by Eq.~47a! is propagated to all of the em-
bryos. Secondly, as the steady-state is approached, the cur-
rents between concentrations approach the same magnitude;
the correct monomer growth-rate equation~48b! will then
have a depletion of monomers that isG times as great as that
predicted by Eq.~47b! if it were an equality.

IV. A TIME-DEPENDENT SOLUTION
TO THE GROWTH-RATE EQUATIONS

The set of coupled differential equations describing the
nucleating system, Eqs.~48a! and~43a!, can be solved using
matrix methods. We first define a column matrix in which the
xth row element is the concentration ofx-mers,nx(t),

n~ t ![S n1~ t !
n2~ t !

A
nG~ t !

D . ~53!

A G3G matrix is built which contains the condensation and
evaporation rates,

FIG. 2. The growth rate of the monomer concentration is affected by the
growth and decay of all the embryo concentrations. For example, when
c2n2(t) dimers become trimers,n1(t) losesc2n2(t) monomers.
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M[S 22c1 2e22c2 e32c3 ••• eG212cG21 0

c1 2~c21e2! e3 � 0 0

0 c2 2~c31e3! � A 0

0 0 c3 � 0 A

0 0 0 � eG21 0

A A A � 2~cG211eG21! 0

0 0 0 ••• cG21 0

D . ~54!

This matrix, which we shall call the growth-rate matrix, is singular since the last column only contains zeros. Consider the time
derivative of the matrixn(t),

d

dt
n~ t !5S d

dt
n1~ t !

d

dt
n2~ t !

A
d

dt
nG~ t !

D 5S e2n2~ t !2c1n1~ t !1 (
i51

G21

ei11ni11~ t !2cini~ t !

c1n1~ t !2~c21e2!n2~ t !1e3n3~ t !
A

cG21nG21~ t !

D . ~55!

The right-hand side comes from Eqs.~48a! and ~43a!. But
clearly, the right-hand side of Eq.~55! is justM•n(t), so we
thereby reduce the set of coupled differential equations to
one matrix differential equation representing the entire sys-
tem,

d

dt
n~ t !5M•n~ t !. ~56!

In order to obtain the particular solution, we invoke the ini-
tial condition that att50, the vapor is composed of only
monomers. The concentration of monomers is given by Eq.
~42!, so

n~0!5S p

kT S 11
Bp

kTD
0
A
0

D , ~57!

wherep is the pressure of the supersaturated vapor. The par-
ticular solution of Eq.~56! with initial condition ~57! is the
exponential of the growth-rate matrix,M , times the initial
condition column matrix,

n~ t !5exp~M t !•n~0!, ~58!

where the matrix exponential is given by25

exp~M t !5(
j50

`
~M t ! j

j !
. ~59!

With Eq. ~58! we have accomplished our goal of obtain-
ing an expression for the time-dependent distribution of each
cluster concentrationnx(t). Since computing the exponential
of a matrix is a well studied problem,25,26 the solution~58!
can be calculated. We must now determine the maximum
time for which the solution is valid, which we shall calltF .

In the derivation of the condensation rates for the em-
bryos, the number of monomers was assumed to remain es-
sentially constant. However, if anything is to nucleate, mono-
mers must be depleted; the monomer growth-rate equation
~48a! describes the mechanism for this to occur. Further-
more, monomer depletion causes a decrease in the vapor
pressure; this lowers the supersaturation ratio, and conse-
quently lowers the nucleation rate. Therefore, we must
choose a maximum time for the model that is large enough
for the embryo concentrations to fully grow, but small
enough that the final concentration of monomers is still ap-
proximately equal to the initial concentration, such that the
nucleation current is not drastically affected. Milleret al.12

used experimental data to derive an empirical nucleation rate
formula which is a function of only the vapor temperature
and supersaturation ratio. We have used this formula to cal-
culate the percentage decrease in the nucleation current if,
for a given temperature, the supersaturation ratio decreases
by 2%; Fig. 3 shows that for supersaturation ratios from 4 to
10, the current decreases 50–70 %, depending on the tem-
perature. Since we assumed that the partial pressure from the
monomer concentration remained approximately equal to the
total vapor pressurep, n1(t) is approximately proportional to
the supersaturation ratioS; using Eq. ~42! we obtain this
proportionality,

n1~ t !'n1~0!5
p`S

kT S 11
Bp`S

kT D'
p`

kT
S. ~60!

Hence, if the monomer concentration decreases by 2%, the
supersaturation ratio decreases by 2%, and the nucleation
rate decreases by 50–70 %. Although such a decrease in the
current appears significant, it is of the same order of magni-
tude. Since nucleation rates vary over many orders of mag-
nitude for small changes in vapor pressure and temperature, a
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change of less than 1 order of magnitude is acceptable. We
therefore choosetF , the final time for which our model is
valid, to be the time when the monomer concentration has
decreased by 2% of its original value; thus,

n1~ tF![0.98n1~0!. ~61!

Of course, the possibility exists that the effect of coagulation
and embryo–embryo interactions could become greater than
or equal to that of the reactions in Eqs.~1! and ~2!. Our
theory alone could not be applied in such an instance. How-
ever, it is beyond the scope of this paper to determine when
coagulation processes become dominant, so we will assume
that tF is short enough that Eqs.~1! and ~2! are the only
significant reactions.

Figures 4 and 5 show distributions of embryo concentra-
tions calculated from Eq.~58! at particular times. The em-

bryo concentrations seem to approach the steady state se-
quentially. Within 1 ns, the number densities of the smallest
clusters have stopped growing significantly. As time
progresses, successive concentrations appear to reach the
steady state, and finally the concentrations with the largest
embryos also appear to stop growing. In both cases it seems
that the steady state is reached sometime between one hun-
dred nanoseconds and a microsecond; this marks the end of
the transient period. We can evaluate the end of the transient
period more precisely by using Figs. 6 and 7, which show the
time evolution of embryo concentrations of particular sizes.
The sequential approach to the steady state is also seen in
these figures, more importantly, however, is the fact that the
largest clusters require a microsecond before they appear

FIG. 3. The effects of a 2% decrease in the supersaturation ratio are shown.
Depending on the temperature and initial supersaturation ratio of the water
vapor, the nucleation rate decreases approximately 50–70 %.

FIG. 4. The distribution of embryo concentrations for water vapor having a
supersaturation ratio of 7.22 at 259.07 K evaluated at different times.

FIG. 5. The distribution of embryo concentrations for water vapor having a
supersaturation ratio of 10.52 at 248.45 K evaluated at different times.

FIG. 6. The time-evolution of specific embryo concentrations is shown for
water vapor having a supersaturation ratio of 7.22 at 259.07 K. In descend-
ing order from the top of the plot, we see the monomers, 12-mers, 25-mers,
49-mers~the critical size!, 74-mers, and 99-mers.
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steady. Hence, for the two systems modeled, the transient
period lasts about a microsecond.

V. REEXPRESSING THE SOLUTION USING
EIGENVALUE ANALYSIS

Although Eq. ~58! is an exact solution to the embryo
growth-rate equations, we cannot predict the physical behav-
ior of a particular embryo concentration by simple inspec-
tion; the matrix exponential must be numerically computed.
However, we can reexpress this equation using the eigenval-
ues and eigenvectors of the growth-rate matrix. Eigenvalue
analysis illuminates how the embryos approach the steady-
state from the transient period, and it allows us to estimate
the accuracy of a steady-state approximation.

The horizontal lines in Figs. 6 and 7 are deceptive, be-
cause they suggest that the embryo concentrations stop
changing. This is not the case; the approach to the steady-
state is asymptotic, and the concentrations never completely
lose their time dependence. In order to prove this, we must
use some auxiliary matrices to reexpress the time depen-
dence of the solutionn(t), Eq.~58!. Define aG3G diagonal
matrix L to contain the eigenvalues,l j , of the growth-rate
matrixM ,

~L ! i , j[l jd i j , i , jP$1,2,...,G%, ~62!

and define anotherG3G matrixV, the columns of which are
the corresponding eigenvectors,

M•V5V•L . ~63!

In our calculations, we have observed three properties of
these eigenvalues. First, the eigenvalues are distinct and real.
Secondly, one has the value zero~sinceM is singular! and
the rest are negative. Thirdly, one of these negative eigenval-
ues is always significantly smaller in magnitude, i.e., ‘‘less
negative,’’ than the others. This will be discussed in greater

detail later. Because the eigenvalues are distinct, the eigen-
vectors are linearly independent, which allows us to con-
clude thatV diagonalizesM . This allows to writeM as

V21
•M•V5L⇒M5V•L•V21. ~64!

The diagonalization ofM allows us to use Eq.~59! to ex-
press the matrix exponential of~M t! in terms ofL andV,

exp~M t !5(
j50

`
~M t ! j

j !

5(
j50

`
~V•L•V21! j t j

j !
5V•F (

j50

`
~L t ! j

j ! G•V21, ~65!

thus

exp~M t !5V•exp~L t !•V21. ~66!

Let us define aG3G diagonal matrix,Elt, as follows

~Elt! i , j[d i j exp~l j t !, i , jP$1,2,...,G%. ~67!

Since L is a diagonal matrix, its matrix exponential is
equivalent to taking the exponential of the diagonal ele-
ments, thus,

exp~L t !5Elt. ~68!

We can now use Eqs.~66! and ~68! to rewrite the time-
dependent number density solution, Eq.~58!, in terms of the
eigenvectors and eigenvalues of the growth-rate matrix,

n~ t !5V•Elt
•V21

•n~0!. ~69!

It is convenient to express this matrix equation in terms of its
elements,

@n~ t !#x,1

5(
i

G

(
j

G

(
l

G

~V!x,i~E
lt! i , j~V

21! j ,l
p

kT S 11
Bp

kTD d l1

5(
i

G

(
j

G

~V!x,i@d i j exp~l j t !#~V
21! j ,1

p

kT S 11
Bp

kTD
5(

i

G

~V!x,i exp~l i t !~V
21! i ,1

p

kT S 11
Bp

kTD .
We now have an expression for the single concentration of
clusters withx molecules at timet:

nx~ t !5
p

kT S 11
Bp

kTD(
i51

G

~V!x,i~V
21! i ,1 exp~2ul i ut !,

~70!

wherex51,2,3,...,G and 0<t<tF . The exponential term is
rewritten as a reminder that the eigenvalues are negative.

The steady-state behavior of the embryo concentrations
in Figs. 4, 5, 6, and 7 result from the relative magnitudes of
the eigenvaluesl i in Eq. ~70!. As mentioned earlier, one of
these is equal to zero and the rest are negative. We choose to
label the zero eigenvaluelG . Additionally, we noted that one

FIG. 7. The time evolution of specific embryo concentrations is shown for
water vapor having a supersaturation ratio of 10.52 at 248.45 K. In descend-
ing order from the top of the plot, we see the monomers, 9-mers, 18-mers,
35-mers~the critical size!, 53-mers, and 70-mers.
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of the negative values was much closer to zero than the rest;
it will be referred to as the dominant eigenvalue,lD . These
relationships are summarized as follows,

ul i u@ulDu.lG50, iÞDÞG. ~71!

Figure 8 illustrates this relationship by comparinglD to the
least negative eigenvalue of thel i group.

The relation of the dominant eigenvalue to the steady
state can be best understood by considering the time evolu-
tion of the cluster concentrationsnx(t), as described by Eq.
~70!. Because of the relative magnitudes of the eigenvalues,
Eq. ~71!, there may come a time, denoted bytx,D , when the
l i terms in Eq.~70! become negligible compared to thelD

term; note that the possibility exists fortx,D to be greater
than tF , the maximum time for which our model is valid.
Furthermore, it could have different values for different clus-
ter sizes, which is the reason for thex subscript. Ift>tx,D ,
Eq. ~70! will become simpler in form,

nx~ t !'
p

kT S 11
Bp

kTD @~V!x,G~V21!G,1

1~V!x,D~V21!D,1 exp~2ulDut !#, ~72!

wheretx,D<t<tF . Recalling the structure of the growth-rate
matrix, Eq.~54!, and noting thatlG is the zero eigenvalue, it
is easy to show that the eigenvector corresponding tolG

must have zeros for all elements except the last, which must
be nonzero,

~V!x,G,G50, ~V!G,GÞ0. ~73!

TheG-mers only absorb embryos; this results in a nonphysi-
cal behavior of growth. Therefore we ignore theG-mers, and
rewrite Eq.~72!,

nx~ t !'
p

kT S 11
Bp

kTD ~V!x,D~V21!D,1 exp~2ulDut !,

~74!

where x51,2,...,G21 and tx,D<t<tF . We see in Fig. 8
that the dominant eigenvalue rapidly approaches zero as the
supersaturation ratio decreases. Thus we can approximatelD

to be zero, and the approximation becomes better as the su-
persaturation ratio decreases. This removes the time depen-
dence from Eq.~74!,

nx~ t !'nx5
p

kT S 11
Bp

kTD ~V!x,D~V21!D,1 , ~75!

wherenx represents the steady-state concentration ofx-mers,
with x51,2,...,G21 andtx,D<t<tF . Equation~75! is valid
only if

exp~2ulDut !'1, t<tF . ~76!

We call this the steady-state condition; if it is satisfied, then
after time tx,D the embryo concentrations will essentially
lose their time dependence. The closer Eq.~76! is to equality,
the more accurate a steady-state approximation will be. Us-
ing Eq.~75!, we rewrite thex-mer concentration Eq.~70! by
pulling theDth term out of the sum and settinglD equal to
zero,

nx~ t !'nx1
p

kT S 11
Bp

kTD (
i51
iÞD

G21

~V!x,i~V
21! i ,1 exp~2ul i ut !,

~77!

wherex51,2,...,G21 and 0<t<tF .
Equation~77! is the final result of our eigenvalue analy-

sis; its form ~which consists of a time-independent steady-
state term added to a time-dependent transient term! allows
us to determine the general physical behavior of the embryos
by simple inspection. Given the form of Eq.~77!, it is clear
that anx-mer concentration approaches the steady state as-
ymptotically during the nucleation process. Furthermore,
knowing that the time-dependent transient portion becomes
negligible fort>tx,D , we can deduce thattx,D is the duration
of the transient period for thex-mers. Finally, by evaluating
the steady-state condition, Eq.~76!, for a particular growth-
rate matrix, we can determine the relative accuracy of a
steady-state approximation. McDonald suggested that evalu-
ating the steady-state nucleation current is analogous to find-
ing the steady-state heat flux through a slab which has a
constant known temperature at each face.7 Equation ~77!,
having the same form as the heat-flux solution, supports his
claim.

VI. COMPARISONS BETWEEN THEORY
AND EXPERIMENT

Equations~58! and ~70! are exact and equivalent solu-
tions for the growth-rate equations~43a! and ~48a!. For
physically realistic problems the growth-rate matrix is large,
e.g., 1003100 for water vapor with a supersaturation ratio
equal to 7.22 at 259.07 K. Obtaining all of the eigenvalues
and eigenvectors is certainly possible, but it is nontrivial.

FIG. 8. The absolute values of the subdominant eigenvalue~s! and the
dominant eigenvalue~line! are shown for a supersaturated water vapor at
293.15 K; the subdominant eigenvalue is the least negative of thel i group
in Eq. ~71!. We note that there is a large difference in magnitude between the
two, and that the dominant eigenvalue approaches zero as the supersatura-
tion ratio decreases.~The scale forlD is on the right and the scale for
min(ul i u) is on the left.!
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Furthermore, as the size of eigenvector matrixV increases, it
becomes ill-conditioned and approaches singularity; this
complicates the calculation ofV21. Sometimes the addition
of terms in Eq.~70! introduces significant round-off prob-
lems. Therefore, although Eq.~70! is theoretically advanta-
geous for deducing embryo concentration behavior, there are
many chances for numerical error to ruin the results. We
have found that using Eq.~58!, which involves calculating
the exponential of the growth-rate matrix, is numerically
more reliable and consistent; thus, we have used it for com-
puting the results which we shall refer to. We have limited
our calculations and comparisons to systems of supersatu-
rated water vapor.

Figures 9 and 10 compare the steady-state distributions
evaluated using Eq.~58! at 1 ms to those of Abraham16 and

Gillespie.24 Abraham’s approach follows that of the classical
theory, in which the classical free energy, the Szilard bound-
ary condition, and the constrained equilibrium Boltzmann
distribution are employed. He obtained figures similar to 6
and 7 by using a nonlinear integration routine to numerically
solve the growth-rate equations; it is interesting to note that
Eq. ~58! and the model of Abraham predict the same general
time evolution for the embryos. He did not obtain a closed
form expression for the time dependence of the cluster con-
centrations, but did derive a steady-state distribution that
agrees with his numerical integration results; we have used
this expression for our comparison. Gillespie also derived a
steady-state distribution of embryos, which we have used.
Although Gillespie did not explicitly present a solution for
the time evolution of cluster concentrations, he derived a
time-dependent matrix expression for the probability that an
embryo, initially a monomer, would be anx-mer at timet.
He proved that one could obtain the average number of
x-mers at timet by simply multiplying this probability by the
total number of embryos~including monomers!; unfortu-
nately, he did not perform the necessary calculations to ob-
tain the time-dependent distributions. We did the calcula-
tions, however, and found that the embryo concentrations
again exhibited the same general behavior as in Figs. 6 and
7, and that they relaxed into values that agreed with
Gillespie’s steady-state expression. Figures 9 and 10 show us
that Abraham’s results predict more medium-sized and large
clusters than our model, and that the Gillespie model predicts
the most clusters in the comparison.

Many theories27–30have been developed to estimate the
time it takes for the nucleating system to significantly ap-
proach the steady state. This time lag is usually defined as
the moment when the current at the critical size reaches
121/e, approximately 63.2% of the steady-state current.
Having a time-dependent expression for the embryo concen-
trations makes this estimation a trivial matter. Figure 11

FIG. 9. We compare the embryo concentration steady-state distributions of
this work ~line!, Abraham~1!, and Gillespie~s! for water vapor having a
supersaturation ratio of 7.22 at 259.07 K.

FIG. 10. We compare the embryo concentration steady-state distributions of
this work ~line!, Abraham~1!, and Gillespie~s! for water vapor having a
supersaturation ratio of 10.52 at 248.45 K.

FIG. 11. The nucleation current at the critical size is divided by the steady-
state current, and the time evolution of this ratio is shown~solid line!. The
dashed line marks the ratio’s value at 0.632. The time lag is then approxi-
mated as the moment when the solid and dashed lines intersect. The system
considered is water vapor having a supersaturation ratio of 4.91 at 263.2 K.
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shows that for water vapor having a supersaturation ratio of
4.91 and at a temperature of 263.2 K, the time lag is approxi-
mately 0.28 ms. Abraham18 ~Table 5.6 of Ref. 18! made
similar calculations for the same system using two different
definitions of the time lag, his results were 0.46 and 0.43 ms.
He also used the models of Wakeshima,27 which predicted
0.16 ms; Collins,28 which predicted 0.49 ms; Federet al.,29

which predicted 0.98 ms; and Andres and Boudart,30 which
predicted 0.55 ms.

We can check the accuracy of our results by comparing
our steady-state nucleation rates with experimental data. This
is convenient, since most experimentalists have been con-
cerned with measuring nucleation rates, rather than distribu-
tions of embryo concentrations. Viisanenet al.13 present data
that shows acceptable agreement with the work of Miller
et al.;12 we will use the expansion chamber results of both
Viisanenet al. and Miller et al. for our subsequent compari-
sons. Our rates will be calculated by using the definition of
the nucleation current, Eq.~19!, at the critical size and by
evaluating Eq.~58! at 1 ms; 1 ms is chosen because it is
enough time for the embryo concentrations to sufficiently
approach their steady-state values and it is the general dura-
tion of a nucleation pulse in the expansion chamber experi-
ments of Viisanenet al.Using the current at the critical size
is purely an arbitrary choice, since the currents at eachx
value are approximately equal once they are steady. The ther-
modynamic parameters~saturation vapor pressure, the sec-
ond virial coefficient, etc.! were calculated using the func-
tions presented by Dillmann and Meier.

For the system having supersaturation ratio of 7.22 and a
vapor temperature of 259.07 K~Fig. 9! Viisanenet al.mea-
sured the nucleation rate to be 1.9e105 embryos/cc/sec; the
empirical fitting function of Milleret al.predicted a value of
5.47e105 embryos/cc/sec. Using Abraham’s steady-state
current equation~which is essentially the classical Becker
and Döring nucleation current!, we calculate that Abraham’s
model predicts 5.08e107 embryos/cc/sec. Gillespie’s
steady-state current expression yields a nucleation rate of
1.38e111 embryos/cc/sec. Our model predicts a value of
7.22e105 embryos/cc/sec.

The system with a vapor temperature of 248.45 K and a
supersaturation ratio of 10.52~Fig. 10! is beyond the range
of the Miller et al.fitting function, so it will not be used here.
Although Viisanenet al. measure the current to be 1e108
embryos/cc/sec, the models of Abraham and Gillespie pre-
dict its value at 6.34e109 and 2.92e113 embryos/cc/sec,
respectively. Our model yields a nucleation rate of 9.06e108
embryos/cc/sec.

Note that in both systems, the nucleation current calcu-
lated from Eqs.~58! and ~19! was significantly closer to the
experimentally measured values than that predicted by Abra-
ham or Gillespie. We will therefore assume that the distribu-
tions of cluster concentrations computed from Eq.~58! are
also more accurate.

Two cases of agreement are not enough to assume a
general trend of accuracy, however. We now make a more
general comparison with theory and experiment over a wide
range of temperatures and supersaturations. In addition to

using the experimental data of Milleret al. and Viisanen
et al., we will compare our nucleation rates with those pre-
dicted by Laaksonenet al.14We choose Laaksonenet al.be-
cause their theory produces currents that are in excellent
agreement with experimental data for many substances, in-
cluding water,n-nonane, and the lower alchohols. Unfortu-
nately, Laaksonenet al.did not present an expression for the
nucleation rate within their study. Since they were modifying
the theory of Dillmann and Meier, we have used Dillmann
and Meier’s general expression for the current,

I5CxC

NxC
E

V S 21

2pkT

]2DGx

]x2 D 1/2U
x5xC

, ~78!

whereCxC
is Dillmann and Meier’s condensation rate at the

critical size. We have combined Eqs.~38! ~t50! and ~39!
with Eq. ~78! to obtain the Laaksonenet al. nucleation cur-
rents. The results of this comparison are given in Fig. 12. We
see that our predictions for the current agree quite well with
the values obtained from the Laaksonenet al. theory. The
agreement with experiment is also very good, remaining
within 1 order of magnitude. Note that the curves implied by
our predictions are parallel to those implied by the data of
Viisanen et al., but not to those of Milleret al. Viisanen
et al. found that the Milleret al. fitting function had slightly
too much curvature, and considered it valid only for rates
between 1e102 and 1e105. This is a narrower range than
we have used in Fig. 12, and our agreement with Milleret al.
is improved if we only consider the data within that range. In
order to make sure that one millisecond is less thantF for
this data set, we have calculated the monomer depletion ra-
tio, which is the ratio of the time-dependent monomer con-
centration to its initial value; see Fig. 13. These ratios stay
well above the limit of 0.98 set forth by Eq.~61!. An inter-
esting aspect of the monomer depletion ratios in Fig. 13 is

FIG. 12. The nucleation rates predicted by this work~line! are compared
with the predictions of the Laaksonenet al. theory~s! and the experimental
measurements of Milleret al. ~3! and Viisanenet al. ~1!. The temperatures
corresponding to the data are given in Kelvin. A supersaturated water vapor
is considered.
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that their values seem to decrease linearly as the supersatu-
ration ratio increases. Furthermore, the rate of decrease
seems to depend on the temperature. For a saturated vapor,
which is in equilibrium, the monomer depletion ratio must
equal 1. We can use this fact to guess at a general expression
for the lines implied by the data points in Fig. 13,

n1~ t !

n1~0!
U
t50.001

'2uM ~T!u~S21!11. ~79!

It is unknown if the temperature-dependent slope,M (T), has
any additional physical meaning besides the rate at which the
monomer depletion ratio decreases. Figure 14 confirms that

the currents for this data set are close to their steady-state
values. The steady-state current ratio,R(t), is defined as,

R~ t ![
uI xC~ t !2I G22~ t !u

I xC~ t !
. ~80!

If the embryo concentrations are approximately in their
steady state, this ratio should approach zero. We see that
R(t), evaluated at 1 ms, ranges from 1e209 to 1e213, so
the currents have indeed become steady.

VII. CONCLUDING REMARKS

We have presented a time-dependent model for the ho-
mogeneous nucleation process, and derived a time-dependent
solution, Eq. ~58!, to the coupled growth-rate differential
equations for molecular cluster concentrations. We have also
corrected the monomer concentration growth-rate equation
so that it allows for the gain and loss of molecules by each
cluster population. Although our approach is basically ki-
netic, our evaporation rate uses the refinements to the
Dillmann and Meier theory presented by Laaksonenet al.14

and Fordet al. This enables us to account for cluster size-
dependent surface tension variations. Additionally, our con-
densation rate incorporates the translational motion of each
embryo, rather than assuming that monomers are the only
moving bodies. A different but equivalent solution to the
growth-rate equations is formed by expressing the exponen-
tial of the growth-rate matrix in terms of its eigenvalues and
eigenvectors. This form is theoretically advantageous be-
cause we find that the relationship between the relative mag-
nitudes of the eigenvalues governs the embryos’ transition
from the initial transient period to the steady state. The mag-
nitude of the dominant eigenvalue also allows us to formu-
late the steady-state condition, Eq.~76!, which predicts the
general accuracy of approximating an embryo concentration
as being steady.

A useful feature of our development is that it can be
applied to almost any nucleation rate theory in order to ob-
tain the time-dependent behavior of the cluster populations.
The model requires an expression for the Gibbs free energy
to be substituted into Eq.~22!. We have applied the free
energies of Dillmann and Meier, Delale and Meier, and
Laaksonenet al., and in each case we obtain nucleation rates
approximately equal to those calculated by each theory; the
agreement is approximate primarily because our condensa-
tion rate differs from the applied theory’s. If the condensa-
tion rates are made to be equivalent, however, we find the
agreement to be practically exact. Thus our calculated time-
dependent cluster growth that is associated with the applied
theory can be considered accurate.

For supersaturated water vapor, the steady-state distribu-
tion of embryos predicted by Eq.~58! has significantly dif-
ferent values than that predicted by Abraham or Gillespie.
However, the nucleation current associated with our distribu-
tion is closest to experimental data. A comparison over a
wide range of water vapor supersaturation ratios and tem-
peratures shows that the currents calculated from Eq.~58!
agree with the measurements of Milleret al. and Viisanen

FIG. 13. The monomer depletion ratio at 1 ms is plotted vs the supersatu-
ration ratio for supersaturated water vapor at 259.0 K~s!, 253.7 K ~* !,
248.5 K ~3!, and 244.1 K~1!. The monomer depletion ratio is defined as
the ratio of the monomer concentration, at a given time, to the initial mono-
mer concentration.

FIG. 14. The steady-state current ratio at 1 ms is plotted vs the supersatu-
ration ratio for supersaturated water vapor at 259.0 K~s!, 253.7 K ~* !,
248.5 K ~3!, and 244.1 K~1!. The steady-state current ratio is defined by
Eq. ~80!.
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et al.; furthermore, our predictions are in excellent agree-
ment with those of Laaksonenet al.,14 which have been ex-
perimentally verified for many different substances and con-
ditions. At present our predictions are limited to water vapor;
further comparisons involving other substances, such as eth-
anol,n-nonane, etc., are needed.

The time-dependent expression for the cluster concentra-
tions makes it easy to compute quantities such as the time lag
for the approach to the steady state. For the one example
considered, our result was midway between those of
Wakeshima and Abraham. Certainly, a broad comparison of
the time lags predicted by this and other theories, as well as
some type of experimental verification, is needed.

Although our solution to the growth-rate equations is
accurate, our model would be improved physically if the
constant monomer assumption were eliminated. This would
result in a time-dependent condensation rate,

cx~ t !5jxn1~ t !, ~81!

where

jx[
cx

n1~0!
. ~82!

In this case, the coupling of the growth-rate equations be-
comes more complicated,

d

dt
n1~ t !5e2n2~ t !2j1@n1~ t !#

21 (
i51

G21

ei11ni11~ t !

2j in1~ t !ni~ t ! ~83!

and

d

dt
nx~ t !5jx21n1~ t !nx21~ t !2@jxn1~ t !1ex#nx~ t !

1ex11nx11~ t !. ~84!

Solving these new equations is probably not worth the extra
effort, since corrections to our values are expected to be
minor.
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