
San Jose State University 
Department of Electrical Engineering 

 
 
 

EE198B - Senior Project 
 
 
 
 
 

Wireless Navigation Using RFID Network 
 
 
 
 

By 
 

Ivette Betancourt 
 

Nima Pakravan 
 

Lawrence Shortbull 
 

Nathaniel Angat 
 
 
 

Project Advisor: Dr. Ray Kwok



 i 

TABLE OF CONTENTS 

1 ABSTRACT................................................................................................................................... 3 

2 INTRODUCTION......................................................................................................................... 4 

3 ORGANIZATION REQUIREMENTS......................................................................................... 4 

3.1 GROUP MEMBERS RESPONSIBILITIES ....................................................................................... 4 

4 ENGINEERING PROCESS ......................................................................................................... 5 

4.1 RFID SYSTEM AND ANTENNA ................................................................................................. 5 
4.1.1 Design............................................................................................................................... 5 
4.1.2 Equipment Requirement..................................................................................................... 5 
4.1.3 Material and Capital Required Per Unit Module................................................................ 5 
4.1.4 Process of implementation ................................................................................................. 6 
4.1.5 Process of Simulation ........................................................................................................ 9 
4.1.6 End Results...................................................................................................................... 11 

4.2 RFID SYSTEM COMMUNICATION .......................................................................................... 11 
4.2.1 Design............................................................................................................................. 11 
4.2.2 Equipment Requirement................................................................................................... 11 
4.2.3 Material and Capital Required Per Unit Module.............................................................. 11 
4.2.4 Process of Implementation............................................................................................... 12 
4.2.5 Process of Simulation ...................................................................................................... 12 
4.2.6 End Results...................................................................................................................... 12 

4.3 NAVIGATION ALGORITHM ..................................................................................................... 12 
4.3.1 Design............................................................................................................................. 12 
4.3.2 Equipment Requirements (Hardware and Software) ......................................................... 12 
4.3.3 Material and Capital Required Per Unit Module.............................................................. 12 
4.3.4 Process of Implementation............................................................................................... 13 
End Results ................................................................................................................................... 18 

4.4 ROBOT ................................................................................................................................. 19 
4.4.1 Design............................................................................................................................. 19 
4.4.2 Equipment Requirements ................................................................................................. 19 
4.4.3 Materials and Capital Required Per Unit Module ............................................................ 19 
4.4.4 Process of Implementation............................................................................................... 20 
4.4.5 Process of Simulation ...................................................................................................... 27 
4.4.6 End Results...................................................................................................................... 28 

5 CONCLUSION............................................................................................................................ 28 

6 APPENDIXES............................................................................................................................. 29 

6.1 APPENDIX 1 - MOTOR CONTROLLER CODE ............................................................................ 29 
6.2 APPENDIX 2 - RFID READER SIMULATOR.............................................................................. 29 
6.3 APPENDIX 3 - NAVIGATION ALGORITHM SIMULATION............................................................ 29 
6.4 APPENDIX 4 – MICROCHIP  PIC6F628 DATA SHEET ............................................................... 29 
6.5 APPENDIX 5 - DUAL MOTOR CONTROLLER USER GUIDE ........................................................ 29 
6.6 APPENDIX 6 INITIAL NAVIGATION ALGORITHM...................................................................... 30 
6.7 APPENDIX 7 FINAL NAVIGATION ALGORITHM........................................................................ 30 



 ii 

TABLE OF FIGURES 
Figure 4-1 Final Antenna ................................................................................................ 8 
Figure 4-2 Antenna Impedance........................................................................................ 9 
Figure 4-3 Radiation Pattern - Back .............................................................................. 10 
Figure 4-4 Radiation Pattern - Front .............................................................................. 11 
Figure 4-5 RFID Grid.................................................................................................... 13 
Figure 4-6 Direction Finding Flowchart ........................................................................ 14 
Figure 4-7 Facing North Flowchart ............................................................................... 15 
Figure 4-8 Facing South Flowchart ............................................................................... 16 
Figure 4-9 Facing East Flowchart.................................................................................. 17 
Figure 4-10 Facing West Flowchart............................................................................... 18 
Figure 4-11 Hardware Block Diagram........................................................................... 21 
Figure 4-12 First Design Hardware Block Diagram....................................................... 21 
Figure 4-13 First Design SW Truth Table...................................................................... 22 
Figure 4-14 Right Motor+ K-Map ................................................................................. 22 
Figure 4-15 Right Motor- K-Map.................................................................................. 22 
Figure 4-16 Left Motor+ K-Map ................................................................................... 23 
Figure 4-17 Left Motor- K-Map .................................................................................... 23 
Figure 4-18 GAL Program Environment ....................................................................... 23 
Figure 4-19 Waveform Simulation ................................................................................ 24 
Figure 4-20 Relay Circuit for Right Motor .................................................................... 25 
Figure 4-21 Final Design Hardware Design................................................................... 26 
Figure 4-22 Process Flow Chart .................................................................................... 26 
 

 
 



 3 

1 Abstract 
This project presents a first look into robotic navigation through a grid of RFID 

programmable tags. Applications can vary from automated warehouses to management of 
merchandise in transit through the use a robot that can retrieve and store information on 
RFID tags. This report will introduce the design and implementation of a robot with 
integrated RFID reader. 

 



 4 

2 Introduction 
Ever since the early stages of development of the robot in the mid 1950’s, many 

researches have been made to enhance its performance and to reduce the need for human 
supervision of the machines as much as possible.  .   

 
In this project, we will introduce a navigating robot, which will navigate its way 

around the RFID based floor without the help of a human.  The objective of this project is 
to use data collected from RFID tags, which are embedded on the ground and use it to 
navigate a robot.  In a real situation the robot would be a version capable of handling 
cargo.  The tags could be either built into the floor of a warehouse or stuck to the terrain 
to form a just-in-time storage ground.  The robot would be able to find specific locations 
and execute specific tasks based on the information that it collects from the tags.   
 

It is a perfect tool for the warehouse environment, as it will not malfunction in 
dusty or greasy area. Further, RFID technology is free of orientation problem.  Therefore 
the robot can retrieve the information from the ID tags without having to line itself up 
with the orientation of the tags as it is in the case of laser.   RFID technology is currently 
being used in the many warehouses for the inventory purposes.  Robot is also being used 
in many similar cases to increase the speed, accuracy, and efficiency, while decreasing 
the losses as a result of job injury.  The combination of these two technologies introduces 
a new product that can bring a higher speed and higher efficiency to many industries. 

 
The project starts with detecting an RFID tag on a grid. The information received 

by the RFID reader is send to a microcontroller, which determines the location of the tag 
on the grid. Based on the location of the tag the microcontroller will send the appropriate 
command to the robot. The robot will navigate on the grid until it reaches its destination.  

3 Organization Requirements 
The project was divided in four parts. Each module could be implemented 

separately from each other, so we had the flexibility of developing all four parts 
simultaneously. 

3.1 Group Members Responsibilities 
 

• Nima Pakravan was in charge of designing, implementing, and testing an antenna 
with a higher reading range than the antenna purchased from Skyetek. In addition, 
he was in charge of testing the RFID reading system. 

• Lawrence Shortbull was in charge of designing, implementing, and testing the 
communication link between the RFID reader and the robot. 

 
• Nathaniel Angat was in charge of designing, implementing, and testing a 

navigation algorithm using a microcontroller. 
 



 5 

• Ivette Betancourt was in charge of designing, implementing, and testing the 
chassis, motor controller, and motor driver of the robot. 

 

4 Engineering Process 

4.1 RFID System and Antenna 

4.1.1 Design 
After conducting extensive research during the first semester of this project, 

Skyetek Reader was chosen as the reader of this project.  Skyetek reader operates at 
13.56MHz and uses ISO-15693 tag transmission protocol.  Data modulation is done using 
amplitude shift keying (ASK) and Manchester system is used for encoding the data.   

In order to increase the reading range of the RFID reader, design of an antenna 
was considered over using the antenna provided by Skyetek.  Loop antenna was chosen 
as our primary design since they are not easily detuned by hand effects and motions. 
They are used in a variety of handheld devices such as car alarm and garage door opener.  
Loop antennas are also not ground plane dependant.  

4.1.2 Equipment Requirement 

4.1.2.1 Design Research 

• Books, Internet 
• Other designs and approaches for low frequency antennas 
• Skyetek antenna design approach 

 

4.1.2.2 Hardware 

• Standard coated copper wire – size 20 
• Glue gun 
• Wooden block 
• Capacitors  

 

4.1.2.3 Testing 

• Network analyzer – network analyzer was used as a primary source for tuning the 
antenna to the resonant frequency and measuring impedance.   

 

4.1.3 Material and Capital Required Per Unit Module 
The table below presents the cost of the RFID reader and transponders.  
 



 6 

 
 
 
 
 
 
 
The table below presents the material and capital required to construct the 

antenna. 
 
 
 
 
 
 
 
 
 

4.1.4 Process of implementation 
Choosing the loop dimensions was the first design concern.  The loop was to be 

chosen so it would match the size of the robot while making it as big as possible.  Bigger 
loop antenna would provide better gain and also a larger bandwidth.   
The inductance and capacitance of the antenna can be calculated from the equations 
below:  
  

  ]774.0)[ln()32.20)((][ 2 −=
a

w
wNnHLsquare   4-1-1 

 
N = number of turns 
w = length of one side (inches) 
a = wire radius (inches) 
 
 
 

  
22 )2(

11
][

fLL
FC

πω
==     4-1-2 

 
ω = angular frequency (radian) 
 

Dimensions of the antenna (w) were chosen in the biggest size possible which is 
3.6 inches on each side.  Wire radius (a) for size 20 copper wires is given by AWG as 
0.0168 inches.  Knowing these two parameters, inductance and capacitance of the 
antenna can be calculated for various loop sizes. 

 
 

Description Quantity Cost 
Skyetek – M1-5 Reader 1 $134.00 
TI Tag-it transponders 25 $112.25 
 Total $246.25 

Table 4-1 Material cost for RFID system 

Description Quantity Cost 
Role of copper wire – 20AWG 1 $3.35 
Wooden block 1 $5 
Capacitors 3 $1.50 
 Total $9.85 

Table 4-2 Material cost for antenna 

w 

w 



 7 

Capacitive Reactance of the antenna can be calculated. 
 

   
Cf

X C .2

1

π
=      4-1-3 

 
Inductive Reactance is also calculated by: 
 
   LfX L .2π=      4-1-4 
 
Further, the DC resistance of the coil is obtained by:   
 

   
S

RDC σ
1

=      4-1-5 

S = cross-section area. 
 
For copper wire, the loss is approximated by the DC resistance of the coil, when the wire 

radius is greater than 
f

066.0  cm.  

4.1.4.1 Calculations  

 
Table below shows the inductance and capacitance calculations for various loop 

sizes.   
 
Square Design             
Capacitance Inductance F Inductance nF   # Turns length side (inc) wire radius 

4.09986E-10 3.3601E-07 336.0098305   1 3.6 0.0168 
1.63994E-11 8.40025E-06 8400.245763   5 3.6 0.0168 
5.06155E-12 2.72168E-05 27216.79627   9 3.6 0.0168 
1.02496E-12 0.000134404 134403.9322   20 3.6 0.0168 
4.5554E-13 0.000302409 302408.8475   30 3.6 0.0168 

1.63994E-13 0.000840025 840024.5763   50 3.6 0.0168 
4.09986E-14 0.003360098 3360098.305   100 3.6 0.0168 

Table 4-3 Capacitor Calculation 

 
The increasing number of loops increases the inductance and therefore, decreases 

the capacitance.  Smallest size capacitor that can be purchased is within a few pico-
Farads.  That imposed a limit on the # of loops that could be used in the design.   
 

4.1.4.2 Problems  

The primary issue in designing this antenna was tuning it to the resonant 
frequency.  The wavelength is calculated at 13.56MHz: 
 



 8 

12.22
656.13

83
)( ===

E

E

f

C
mλ      4-1-5 

 
Numerous designs were attempted at quarter wavelength, half wavelength, and 

full wavelength (near 60 loops).  Bandwidth of only 14 KHz for the resonant frequency 
of the reader, and narrow bandwidth of the antenna made the design and tuning the 
antenna very difficult.  

 
Various capacitor connections were also made to adjust the frequency and 

matching.  Capacitors were connected in parallel, in series, or both to the circuit for each 
size to achieve the goal.   
 

4.1.4.3 Final Design 

Final design was achieved with 9 loops antenna. Capacitors were connected in 
series to ground. As seen in table 4-1-1, the inductance and capacitance for this size 
antenna is: 
 
L = 27.2 uH 
C= 5.06 pF 
 
Two 10pF capacitors were connected in series with a variable capacitor forming a series 
resonant circuit.  Final design is shown in figure 4-1.  
 
 

 
Figure 4-1 Final Antenna 

 
Calculations of other parameters are as follows: 
 

From equation 4-1-3, 6.2319
2

1

0

==
Cf

X C π
 

From equation 4-1-4, 4.23172 0 == LfX L π  

Therefore, the impedance is minimized since CL XX ≈ , causing resonance condition.   



 9 

From equation 4-1-5, 

inch
E

cm
E

cm
cm

ES
RDC

Ω
−=

Ω
−=

Ω

== 52.3525.1
)136.0)(

.

1
59.5(

11

σ
 

 

4.1.5 Process of Simulation 
Network analyzer was used as a primary testing equipment for tuning and 

matching the antenna.  The antenna was first tuned to the resonant frequency and then the 
impedance and radiation pattern was analyzed.   

4.1.5.1 Impedance 

Impedance of the antenna was measured using the Network Analyzer. As shown  
in figure 4-2, Z = 29 – 10j. 
 

 

Figure 4-2 Antenna Impedance 

 
After comparing to the impedance of the reader, it was concluded that matching 

network would not be necessary since the two impedances were very much close to each 
other.  This could also be predicted since a series resonant circuit results in minimum 
impedance at the resonant frequency.   

 
To conduct a test, the antenna was connected to the reader and a reading 

simulation was done using Skyeware software.  The reading distance was measured to be 
about 2 inches, as compared to 1.5 inches using the Skyetek antenna.   
Better reading distance can be obtained by adding an amplifier between the reader and 
the antenna.   
 

4.1.5.2 Radiation Pattern 

Connecting the antenna to S1 port of the network analyzer, and the Skyetek 
antenna to S2 port, the radiation pattern was measured every 30 degrees.  Using S21 
parameter, antenna’s radiation was measured horizontally and vertically, both in front 
and back of the antenna at 30cm distance.  Table below shows the result.  
0 degree indicates an angle perpendicular to the center of the antenna.   
 



 10

 
Horizontal (Front) Horizontal (Rear) 

Angle (degree) Gain (dB) Angle (degree) Gain (dB) 
90 -36 90 -44
60 -27 60 -27
30 -21 30 -22
0 -18 0 -18

-30 -20 -30 -21
-60 -24 -60 -26
-90 -40 -90 -42

    
Vertical (Front) Vertical (Rear) 

Angle (degree) Gain (dB) Angle (degree) Gain (dB) 
90 -56 90 -50
60 -30 60 -27
30 -23 30 -24
0 -18 0 -18

-30 -24 -30 -22
-60 -31 -60 -30
-90 -54 -90 -52

Table 4-4 Radiation Measurements (S21) 

 
 
 
 

Using excel, the data was plotted as shown in figure 4-3 and 4-4. 
 

Radiation Pattern - Back

-50

-40

-30

-20

-10

0

-100 -50 0 50 100

Angle (degree)

G
ai

n
 (

d
B

)

 

Figure 4-3 Radiation Pattern - Back 

 



 11

Radiation Pattern - Front

-50

-40

-30

-20

-10

0
-100 -50 0 50 100

Angle (degree)

G
ai

n
 (

d
B

)

 

Figure 4-4 Radiation Pattern - Front 

 
Analyzing the radiation pattern both in front and back of the antenna, it can be 

concluded that antenna constructs an oblong shape radiation pattern both in front and 
rear.  Such pattern can be simulated as in figure 4-4.1.  

 
 
 
 
 
 
 
 
 

Figure 4-4.1 
 
 

4.1.6 End Results 
A simple loop antenna was made in order to enhance the reading distance of the 

reader.  This distance was in fact increased for about half an inch as compared to the 
Skyetek antenna.  Antenna matching was unnecessary as the reader and antenna had close 
impedance.  Examining the radiation pattern, it was concluded that antenna constructs 
two oblong shapes both in front and rear, which is the case in most square loop antennas.   

4.2 RFID System Communication 

4.2.1 Design 

4.2.2 Equipment Requirement 

4.2.3 Material and Capital Required Per Unit Module 



 12

4.2.4 Process of Implementation 

4.2.5 Process of Simulation 

4.2.6 End Results 

4.3 Navigation Algorithm 

4.3.1 Design 
There were two versions of the navigation algorithm that were attempted. The 

first was based on a staggered grid where every other row was offset by half the distance 
between tags. Developing the navigation code for this grid proved to be more 
cumbersome because this required the robot to make 30°, 60°, and 90° turns. The final 
version of the navigation code was based on a 5x5 matrix with no staggered rows. This 
version only required the robot to make 90° turns. 

4.3.2 Equipment Requirements (Hardware and Software)  
The PIC 16F628 8-bit microcontroller by Microchip was the microcontroller 

selected for this application. The PIC 16F628, which replaced the PIC 16F84, is a widely 
used microcontroller that is flexible enough for a variety of applications. With its 
2Kbytes of program memory, 224 bytes data memory, 128 bytes in the data EEPROM, 
the PIC 16F628 was the logical choice for this particular application. 
 

Hi Tech Software’s PICC Lite is a free ANSI C Compiler for various Microchip 
microcontrollers. This application translates source code written in the C language into 
assembly language, which can be programmed into the microcontroller’s Flash memory. 
The 16F628 wasn’t specifically associated with PICC Lite, but the 16F627 was. The only 
difference between the 16F628 and the 16F627 is that the 16F628 has more memory. So 
when programming the 16F628, the 16F627 must be selected in PICC lite. 

 
MPLab Integrated Development Environment (IDE) is an integrated toolset for 

the development of microcontroller applications utilizing Microchip’s microcontrollers of 
the PIC12/16/17/18 and dsPIC families of microcontrollers. MPLab provides an 
environment for application development and enhanced debugging. It also serves as a 
central, unified graphical user interface for other Microchip and Third Party software and 
hardware development tools. 

4.3.3 Material and Capital Required Per Unit Module 
The table below shows the cost of material and capital required per unit module. 

 
 

 Description Quantity Cost 
Microcontroller 1 $3.95 
PICC Lite C Compiler 1 Free 
MPLab IDE 1 Free 

Table 4-5 Material Cost 



 13

4.3.4 Process of Implementation 

4.3.4.1 RFID Grid 

The RFID grid in which the robot will be navigating in is an area that measures 
120cm by 120cm. The RFID tags are place in a 5x5 configuration. The spacing between 
tags is 30cm, roughly the distance of 3 antenna lengths. Horizontal rows and vertical 
columns are numbered 1 through 5. Figure 4-5 shows the layout of the RFID grid. This 
was deemed to be the optimal configuration based on the range of the RFID reader. 
During initial testing, the reader demonstrated a reading range of approximately 3cms. 
This limited the distance we could space the tags from each other. If the tags were spaced 
any further from each other, the probability of the robot not hitting a tag would increase. 
 

 
 

1 2 3 4 5

1

2

3

4

5

West

North

East

South
 

Figure 4-5 RFID Grid 

 

4.3.4.2 Navigation Algorithm 

Navigating in the grid is a systematic process. It is assumed that the robot is first 
placed on the outer edges of the RFID grid, facing the center. The robot will then proceed 
to navigate itself and find the tag located in row 1, column 3.The navigation algorithm 
starts by first determining what direction the robot is facing, and then selects the 
appropriate sub-algorithm. 
 

4.3.4.3 Direction Finding 

The flowchart to determining direction is shown in Figure 4-6. When the robot is 
first placed anywhere on the edge of the grid, facing the center, the RFID microcontroller 



 14

(the microcontroller tasked to direct the RFID reader to obtain tag information) obtains 
tag information from reader. This tag information is the identification number 
 
 

D i r e c t i o n  F i n d i n g

R e a d

S t a r t

F o r w a r d

R e a d

C o m p a r e
c u r r e n t  t a g s  a n d

p r e v i o u s  t a g s .

F a c i n g
N o r t h

F a c i n g
S o u t h

F a c i n g
E a s t

F a c i n g
W e s t

 

Figure 4-6 Direction Finding Flowchart 

 
found on the tag. The RFID microcontroller then matches the retrieved tag information to 
a pre-assigned list of where this particular tag will be found on the grid. The tag value 
from the pre-assigned list is the information that will be sent to the NAV microcontroller 
(the microcontroller tasked to perform the navigation algorithm). The converted tag 
information will now be labeled as the previous tag info and put into the navigation 
algorithm memory for use later in the process. 
 

After the robot has retrieved and converted the initial tag information, it will 
proceed forward until it finds a new tag. The NAV microcontroller sends the command to 
the robot microcontroller (the microcontroller tasked to control the robot) which tells the 
robot to move forward. When a new tag is found, the RFID microcontroller tells the 
NAV microcontroller to tell the robot microcontroller to stop. The RFID microcontroller 
will then retrieve and convert the new tag information and send it to the NAV 
microcontroller. The NAV microcontroller will then label this new tag information as 
current tag information. After this process of obtaining previous and current tag 
information, the navigation algorithm can now determine what direction the robot has 
been placed. 
 

The navigation algorithm compares the current tag information (ctagrow, ctagcol) 
with the previous tag information (ptagrow, ptagcol) to determine the robot’s initial 
direction. If ctagcol = ptagcol and ctagrow < ptagrow, the robot is facing North. If 



 15

ctagcol = ptagcol and ctagrow > ptagrow, the robot is facing South. If ctagrow = ptagrow 
and ctagcol > ptagcol, the robot is facing East. If ctagrow = ptagrow and ctagcol < 
ptagcol, the robot is facing West. Based on this initial direction, the algorithm will 
proceed to one of the four sub-routines labeled Facing North, Facing South, Facing East, 
and Facing West. 
 

4.3.4.4 Facing North 

After the algorithm has determined that the robot is facing North, a command is 
sent to the robot microcontroller to move forward until a tag is found. The current tag 
information is labeled as previous tag information for use later in the process. When a 
new tag is found, new tag information obtained and labeled as current tag information. 
The navigation algorithm checks if the current tag row value is equal to 1. If not, the 
algorithm goes into a loop of moving forward and retrieving new tag information until 
the current row tag value is equal to 1. When the current tag row value is 1, the algorithm 
checks if the current tag column value is equal to 3. If it is, the target tag has been found. 
If it isn’t, another check is made. If the current tag column value is less than 3, the robot 
is told to make a right turn. If the column value is greater than 3, a right turn is made. 
After the robot clears the turn, the current tag information is labeled as previous tag 
information and the robot moves forward until it finds a new tag and retrieves new tag 
information. The algorithm then checks if the current tag column value is equal to 3. If it 
is, target tag has been found. If not, the NAV microcontroller goes into a loop of finding 
new tag information until the current tag column value is equal to 3 and the target tag is 
found. Figure 4-7 shows the Facing North flowchart. 
 
 

Row =  1

Col = 3

Col  < 3

Turn
(Left)

Turn
(Right)

Forward
Read

End

End

Start

Col = 3

Forward
Read

N o

Yes

Yes

N o

N o Yes

N o

Yes

Facing North

 

Figure 4-7 Facing North Flowchart 

 



 16

4.3.4.5 Facing South 

When the algorithm has determined that the robot is facing South, it checks if the 
current tag column value is less than 3. If it is, the robot makes a left turn. If it isn’t, the 
robot makes a right turn. The current tag information is now labeled as previous tag 
information. At this point, the robot is either facing East or West so the algorithm 
proceeds to the Facing East sub-routine. Figure 4-8 shows the Facing South flowchart. 
 
 

Start

C o l < 3

Turn
(Right)

Turn
(Left)

Forward
R e a d

Facing South

Facing
E a s t

N o Y e s

 

Figure 4-8 Facing South Flowchart 

 

4.3.4.6 Facing East 

When the algorithm finds itself in the Facing East sub-routine, it checks if the 
current tag column value is less than 3. If it’s not less than 3, the algorithm proceeds to 
the Facing West sub-routine. If it is, it checks if the current tag column value is equal to 
3. If it isn’t, the algorithm will go into a loop and the robot will move forward and to find 
new tag information until the column value is equal to 3. Once the column value is equal 
to 3, the algorithm checks if the current tag row value is equal to 1. If it is, the target tag 
is found. If not, the algorithm checks if the current tag column value is less than 3. If it is, 
then the robot makes a left turn. If the column value is greater than 3, a right turn is made. 
The algorithm then goes into a loop and moves forward and obtains new tag information 
until the current tag row value is equal to 1. At this point, the target tag has been found. 
Figure 4-9 shows the Facing East flowchart. 
 
 



 17

F a c i n g
S o u t h

C o l  <  3

F a c i n g
W e s t

F a c i n g  E a s t

C o l  =  3F o r w a r d
R e a d

R o w  =  1

C o l  <  3

T u r n
( L e f t )

T u r n
( R i g h t )

F o r w a r d
R e a d

R o w  =  1

E n d

S t a r t

E n d

N o

Y e s

N o

Y e s

Y e s

N o

Y e s N o

Y e s

N o

 

Figure 4-9 Facing East Flowchart 

 

4.3.4.7 Facing West 

When the algorithm is in the Facing West sub-routine, it performs a routine 
similar to the Facing East routine, but with one difference. After the robot makes its way 
to Column 3 and checks if the current tag column value is less than 3, if this condition is 
true (ctagcol < 3), the robot makes a right turn. If it is false (catgcol > 3), the robot makes 
a left turn. Figure 4-10 shows the Facing West flowchart. 
 



 18

F a c i n g
E a s t

C o l  =  3
F o r w a r d

R e a d

R o w  =  1

C o l  <  3

T u r n
( L e f t )

T u r n
( R i g h t )

F o r w a r d
R e a d

R o w  =  1

E n d

E n d

N o

Y e s

Y e s

N o

Y e s N o

Y e s

N o

S t a r t

F a c i n g  W e s t

 

Figure 4-10 Facing West Flowchart 

End Results 
Some problems were encountered in developing the navigation solution for this 

project. One problem encountered was the difficulty in trouble shooting the original 
navigation source code. Source codes as complicated and as involved as this one can 
become a very tedious debugging job. Following the logic can be so meticulous and a lot 
of attention to detail must be taken. Focusing too much on the logic can take one’s eye 
away from focusing on the syntax of the code. This was a major problem for this project. 
A lot of time was devoted to troubleshooting and debugging the syntax of the original 
navigation code. A solution to this problem is to break up a programming project into 
smaller, manageable parts. Coding debugging smaller building blocks where the whole 
routine fits on the screen makes it easier to catch syntax and logic errors and saves 
precious time that can be devoted to other tasks. 

 
Another problem that was encountered in developing the nav code occurred due 

to the fact the original nav code was written in Visual C++. An incorrect assumption was 
made that the code could be written and debugged in Visual C++. Once the code 
compiled and was working, the assumption was it could simply be cut and pasted into 
PICC Lite and the code would then be ready to be placed into the PIC 16F628’s Flash 
memory. Once the final version of the nav code was working and ready, cutting and 
pasting it over to PICC Lite and burning it into the microcontroller wasn’t as easy as that. 
There were commands in PICC Lite where the code would use one of the two I/O ports 
of the microcontroller. There were I/O commands in PICC Lite that were outside the 
scope of the C Language. These I/O commands resembled assembly language 
commands, which was the language the microcontroller was programmed in. A possible 
solution to this problem is writing the nav code in assembly instead of C. This would 
simplify the development process because there wouldn’t be two programming languages 
that needed to be considered. 



 19

4.4 Robot 

4.4.1 Design 
Two different designs were attempted to arrive at a working motor controller and 

motor driver solution. The first one used a programmable Gate Array Logic (GAL) 
device as motor controller and a relay-based circuit to act as motor driver. This first 
design proved to have some faults that were improved by a second attempt. The second 
design used a microcontroller approach instead as motor controller and an integrated dual 
motor driver. This second effort put us a lot closer to a reliable robot motor control 
module. Later on this paper, we explore the implementation, advantages, and 
shortcomings of each design. 
 

4.4.2 Equipment Requirements 
The following is a list of hardware and software resources that were needed to 

design, build, and test the robot: 

4.4.2.1 Project Concept Research 

• Books, Internet 
• Examples and approaches used by other people 
• Specifications, application notes on candidate components 

4.4.2.2 Software Tools 

• Lattice’s ispLEVER 3.1 Programmable Logic Development Environment 
• Microchip’s MPLAB Integrated Development Environment for PIC 

microcontrollers 

4.4.2.3 Prototype Construction 

• EETools’ TopMax Universal Device Programmer 
• Microchip’s PICSTART Plus microcontroller programmer 

4.4.2.4 Testing, Debugging, and Fine Tuning 

• Digital Multi-Meter 
• Digitizing Oscilloscope 
• Bread-board Prototyping Board 
• Microchip’s PICSTART Plus Debugger 

4.4.3 Materials and Capital Required Per Unit Module 
The table below presents the material and capital required to construct the robot. 

 
 
 
 
 
 



 20

Part Description Quantity Cost 
Chassis 1 $15 
Motors + Gearbox 1 $10 
Cordless Phone Batteries 1 pack $10 
AA Batteries 3 $4.90 
 Total $40 

Table 4-6 Robot Bill Of Materials 

 
The following table presents the material and capital required per unit for the first 

motor controller prototype. 
 

Description Quantity Cost 
Gate Array Logic 1 $1  
Electromechanical Switches 4 $16  
Transistors 4 $3  
Prototype Board 1 $5  
 Total $25  

Table 4-7 First Motor Controller BOM 

 
The table below the material and capital required per unit for the final motor 

controller design.  
 

 

Table 4-8 Final Motor Controller BOM 

 
 

4.4.4 Process of Implementation 
The robot module can be easily explained by breaking it into hardware and 

software. As illustrated in figure 4-11, the robot interfaces with the navigation module 
waiting for an instruction to execute. 
 

Description Quantity Cost 
Microcontroller 1 $3.95 
Dual Motor Controller 1 $20 
Prototype Board 1 $5 
 Total $28.95 



 21

                       

Figure 4-11 Hardware Block Diagram 

 
As part of the hardware to control the robot, we used two motors controlled by a 

motor driver. The motor driver follows instructions send by the motor controller. The 
output of the motor controller is based on information received from the Navigation 
Algorithm Module. Logic and motors are power by separate batteries. 

4.4.4.1 First Design 

To implement the hardware and software of the robot, two prototypes were 
designed and constructed. The figure below presents the block diagram of the first 
design. 

 

 

Figure 4-12 First Design Hardware Block Diagram 

 
 In this design, electromechanical switches, which were controlled by a 
programmable Gate Array Logic (GAL) chip, drove the motors. The entire system was 
powered by only one battery. 
 



 22

CBACBAM R +=+

4.4.4.2 First Design Software Implementation 

 The motor controller was implemented using logic equation in the GAL. Four 
outputs from the GAL switched transistors that controlled the relays. These last ones, at 
the same time, would direct current flow through the motors. The following figures 
present the truth table, K-maps, and equations used for this design. 

 
   INPUT  OUTPUT  

Instruction A B C MR+ MR- ML+ ML- 
Turn Left 0 0 0 0 1 1 0 
Reverse 0 0 1 1 0 1 0 
Turn Right 0 1 0 1 0 0 1 
Forward 0 1 1 0 1 0 1 
Stop 1 0 0 0 0 0 0 
Reserved 1 0 1 0 0 0 0 
Reserved 1 1 0 0 0 0 0 
Reserved 1 1 1 0 0 0 0 

Figure 4-13 First Design SW Truth Table 

 
Right motor+ logic K-map: 
 
 

C\AB 00 01 11 10 

0 0 1 0 0 

1 1 0 0 0 

Figure 4-14 Right Motor+ K-Map 

 
 

Right motor- logic K-map: 
 
 

C\AB 00 01 11 10 

0 1 0 0 0 

1 0 1 0 0 

Figure 4-15 Right Motor- K-Map 

 
 
 
 

 

BCACBAM R +=−



 23

Left motor+ logic K-map: 
 

 
 

C\AB 00 01 11 10 

0 1 0 0 0 

1 1 0 0 0 

Figure 4-16 Left Motor+ K-Map 

 
 

Left motor- logic K-map: 
 
 

C\AB 00 01 11 10 

0 0 1 0 0 

1 0 1 0 0 

Figure 4-17 Left Motor- K-Map 

 
 Logic equations are converted into a fuse map using a programmable logic 
development environment provided for free to students. Later on, this fuse map can be 
“burned” to a PAL or GAL using a universal device programmer like EETools’ TopMax. 
Fig 4-18 illustrates the environment used to write the GAL program. 
 

 

Figure 4-18 GAL Program Environment 

BAM L =+

BAM L =−



 24

            
 

 Figure 4-19 illustrates a waveform simulation generated by the equations. This 
corresponds to the intended motor current flow behavior to independently activate each 
motor in either direction of motion (forward or reverse). 
 
 
 

 

Figure 4-19 Waveform Simulation 

            

4.4.4.3 First Design Hardware Implementation 

 Signals send by the motor controller cannot drive the motors directly without 
some conditioning. The current required to drive the relays would probably damage the 
programmable logic device. Instead, transistors are used in between each relay and its 
corresponding GAL output. Each motor is controlled by two relays. Each relay can be 
independently activated causing current flow in any direction through each motor. The 
direction of current flow determines the direction of motor turn. Figure 4-20 presents the 
circuitry design based on the electromechanical switches for one motor. 



 25

 

Figure 4-20 Relay Circuit for Right Motor 

 
                         

4.4.4.4 First Design Problems 

 Several problems were encountered after the implementation of this first design. 
The first problem was that one battery did not provide enough power to logic when the 
motor driver activated the motors. This was due to a drop in voltage caused by an 
increase in current demanded by the motors. Also, programmable logic is not very 
flexible and cannot easily provide timing control. Since the output to the motors was 
present immediately and for the same length of time an input was received. Finally, this 
design resulted on an open-loop motor control methodology, since it did not provide any 
kind of feedback. 

 

4.4.4.5 Final Design 

 To solve some of the problems posted by the first design, a second approach, 
based on a different design philosophy was attempted. 



 26

 

Figure 4-21 Final Design Hardware Design 

 
 As shown in figure 4-21, the final design is powered by two different battery 
sources. The motors are driven by a dual motor driver, and the motor controller was 
implemented using a microcontroller. 

4.4.4.6 Final Design Software Implementation 

             

Figure 4-22 Process Flow Chart 

 
 Figure 4-22 presents the process flow chart of the microcontroller, which was 
programmed to wait for an input and send the appropriate command to the motor driver. 
This time the microcontroller regulates the length of movement to achieve automated 
turns. The navigation module will only have to issue a turn command and the motor 
controller will execute it correctly. All software was written in assembly language using 
the MPLAB development environment for PIC microcontrollers, and it was programmed 
into the built-in flash of the microcontroller using a PICSTAR plus programmer. The 
code programmed into the microcontroller can be found in Appendix 1. 



 27

 

4.4.4.7 Final Design Hardware Implementation 

 The microcontroller communicates with the motor driver through a serial 
interface. In addition, the motor driver has the required integrated power transistors to 
safely turn on and off each motor. Since this is a dual-motor driver, it can control both 
motors and their speeds. The motor driver and microcontroller specifications can be 
found in Appendix 5 and 4 respectively.  
 
 In this design, logic is powered by three AA batteries (4.5V) and the motors are 
powered by a cordless phone battery pack, which supply 3.6V and can drive 650mA. 
 

4.4.4.8 Final Design Problems 

 The problem encounter in this design was to accurately calibrate turns to achieve 
exactly 90 degrees, which was the intended turning angle. The robot presents an average 
turn error of 2.7 degrees. Turns were calibrated using a software delay. 
 
 One solution to accurately calibrate robot turns will be to use shaft encoders and 
replace the software delay function by a shaft encoder step counter. This would increase 
the accuracy of the turn by removing some of the error caused by the motor reacting to an 
“instantaneous” lack, or presence, of current when the motor is turned off, or on, 
respectively. Furthermore, the calibration of turns depends on the surface on which the 
robot navigates 

4.4.5 Process of Simulation 

4.4.5.1 RFID Reader Simulator 

 This simulator tests the motor controller without needing to read RFID tags or 
having a navigation algorithm. A second PIC microcontroller was programmed to 
simulate reader commands. Once this microcontroller is connected to the motor 
controller, the robot executes a predefined list of movements in a time interval dictated 
by the microcontroller. The navigation algorithm is bypassed. 
The code programmed in this second microcontroller can be found in Appendix 2. 

4.4.5.2 Navigation Algorithm Simulation 

This simulator tests the motor controller and RFID reader without needing a 
navigation algorithm. Another PIC microcontroller was programmed with a simple 
navigation algorithm. This microcontroller is connected to the RFID reader module and 
the motor controller. Therefore, the robot is capable of extracting the RFID tag address, 
matching it to an entry on a predefined movement table, and executing a movement.  
The code programmed into this microcontroller can be found in Appendix 3. 
 
 
 



 28

4.4.6 End Results 
Despite the problems encounter with the first design, the robot module was 

successfully completed using a second design approach.  The RFID Reader Simulator 
showed that the robot accepts instructions and moves correctly. Since the RFID tags are 
placed close to each other on the grid design, the 2.7-degree average turn angle error does 
not represent a tremendous deviation.  

5 Conclusion 
Completion of this project brings a new product to the world of industry to increase 

speed and efficiency while reducing the loss.  To implement the idea, project was divided 
into four different parts: RFID system and antenna, RFID system communication, 
Navigation algorithm, and Robot.  Each part was handled by a member of a group.     

 
In developing this project, new and innovative solutions were needed to tackle the 

design challenges that were encountered.  Each problem was dealt with further research 
and trial and error method in a timely manner.  Various objective of electrical 
engineering was used in developing this project including radio frequency, digital design, 
and signal processing.  Overall the learning objective of this project provided an 
opportunity to research beyond the academic requirements.   

 
Total estimated cost of this project was approximately $364, which was below the 

estimated $400 budget.   



 29

6 Appendixes 

6.1 Appendix 1 - Motor Controller Code 
 
 
;************************************************************ 
; Processor: PIC16F628 at 4 MHz using internal RC oscillator 
; Function:  Motor Controller 
; Hardware:  Onboard Microcontroller 
; Filename:  MC.asm 
; Author:    Betancourt, Ivette 
 
;************************************************************ 
 

 

6.2 Appendix 2 - RFID Reader Simulator 
 
;************************************************************ 
; Processor: PIC16F628 at 4 MHz using internal RC oscillator 
; Function:  Give Navigation Commands 
; Hardware:  Onboard Testboard 
; Filename:  MC7-2.asm 
; Author:    Betancourt, Ivette 
 
;************************************************************ 
 
 
 

6.3 Appendix 3 - Navigation Algorithm Simulation 
 
 
;************************************************************ 
; Processor: PIC16F628 at 4 MHz using internal RC oscillator 
; Function:  Give Navigation Commands 
; Hardware:  Onboard Testboard 
; Filename:  MC7-2.asm 
; Author:    Betancourt, Ivette 
 
;************************************************************ 
 

6.4         Appendix 4 – Microchip  PIC6F628 Data Sheet 
 

6.5 Appendix 5 - Dual Motor Controller User Guide 
 
 
 



 30

 

6.6 Appendix 6 Initial Navigation Algorithm 
/* This program will direct the robot to find a path to the target tag. 
 
 Written by: Nathaniel Angat 
  
*/ 
 
 
        

6.7 Appendix 7 Final Navigation Algorithm 
/* SIMPNAVFINAL  
 
 This program will tell the robot how to navigate in the RFID grid. 
  
 Written by: Nathaniel Angat 
 Assumptions: 
   1) Tagcol and tagrow values are constantly being updated by the 
first microcontroller. 
    
   


