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Statically Indeterminate Structures

At the beginning of the course, we learned that a stable 
structure that contains more unknowns than independent 
equations of equilibrium is Statically Indeterminate.

• Redundancy (several members 
must fail for the structure to 
become unstable);

• Often maximum stresses is 
certain members are reduced;

• Usually deflections are 
reduced.

Advantages Disadvantages

• Connections are often more 
expensive;

• Finding forces and deflections 
using hand analysis is much 
more complicated.



Steps in Solving an Indeterminate 
Structure using the Force Method

Determine degree of Indeterminacy  
Let n =degree of indeterminacy

(i.e. the structure is indeterminate to the nth 
degree)

Define Primary Structure 
and the n Redundants

Define the Primary 
Problem

Solve for the n
Relevant 

Deflections in 
Primary Problem

Define the n
Redundant 
Problems

Solve for the n
Relevant Deflections 
in each Redundant 

Problem

Write the n
Compatibility 
Equations at 

Relevant Points

Solve the n
Compatibility 

Equations to find the 
n Redundants

Use the Equations 
of Equilibrium to 

solve for the 
remaining 
unknowns

Chapter 3

Chapters 3,4,5  then 7 or 8

Construct 
Internal Force 

Diagrams 
(if necessary)

Chapter 3

Chapters 3,4,5  then 7 or 8

Chapters 3,4,5



Force Method of Analysis

DBA

w P

Consider the beam

FBD

DBA C

w P

Ax

Ay

MA

X = 4

3n = 3(1) = 3

Beam is stable

Statically Indeterminate 
to the 1st degree

EI C

Cy



Define Primary Structure and Redundants
• Remove all applied loads from the actual structure;
• Remove support reactions or internal forces to define a primary structure;
• Removed reactions or internal forces are called redundants;
• Same number of redundants as degree of indeterminacy
• Primary structure must be stable and statically determinate;
• Primary structure is not unique – there are several choices.

DBA C

Primary Structure Redundant

MA

DBA C

DBA C
MQ

Cy

Q



Define and Solve the Primary Problem

• Apply all loads on actual structure to the primary structure;
• Define a reference coordinate system;
• Calculate relevant deflections at points where redundants were 

removed.

CBA

w Py

x
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Define and Solve the Redundant Problem

• There are the same number of redundant problems as degrees of indeterminacy;
• Define a reference coordinate system;
• Apply only one redundant to the primary structure;
• Write the redundant deflection in terms of the flexibility coefficient and the 

redundant for each redundant problem.
• Calculate the flexibility coefficient associated with the relevant deflections for 

each redundant problem;

DBA

y

x

Δ""

EI C

Cy

DBA

y

x

#""
EI C

1

Δ"" = %&#""

Redundant 
Problem



Compatibility Equation

Δ" + Δ"" = 0
Compatibility at Point C

∆" + '()"" = 0
Solve for Cy



The Force Method is Based on the 
Principle of Superposition

Indeterminate
Problem

Primary
Problem

Redundant
Problem 
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EI C
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Lab Problem
For the indeterminate beam 
from Lab 11, subject to the 
point load at B, find the 
support reactions at A and 
C and construct the shear 
and moment diagram for 
the beam. Neglect axial 
force effects. 

A B

P

EI C

y

x

Ay

MA

Cy

FBD

4 unknowns

2 equations of 
equilibrium

Beam is stable

Statically Indeterminate 
to the 2nd degree

12 ft 6 ft

MC
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B

P
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x

12 ft 6 ft



Define Primary Structure and Redundant
• Remove all applied loads from the actual structure;
• Remove support reactions or internal forces to define a primary structure;
• Removed reactions or internal forces are called redundants;
• Same number of redundants as degree of indeterminacy
• Primary structure must be stable and statically determinate;
• Primary structure is not unique – there are several choices.

BA
C

Primary Structure Redundants

MA

BA C
CyMC

MC



Define and Solve the Primary Problem

• Apply all loads on actual structure to the primary structure;
• Define a reference coordinate system;
• Calculate relevant deflections at points where redundants were 

removed.

B

A C

Py

x

EI!"

!" = ? ?

From 
Tabulated 
Solutions

+ Counter-clockwise
rotations positive

12 ft 6 ft

!& = ? ?

!&
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Define and Solve the Redundant Problems
• There are the same number of redundant problems as degrees of indeterminacy;
• Define a reference coordinate system;
• Apply only one redundant to the primary structure;
• Write the redundant deflection in terms of the flexibility coefficient and the 

redundant for each redundant problem.
• Calculate the flexibility coefficient associated with the relevant deflections for 

each redundant problem;

!"" = $"%""
Redundant Problem 1

BA C

y

x

EI!""MA

BA C

y

x

EI%""1 %"" = ?
From Tabulated Solutions

18 ft

18 ft

!'"

%'"

%'" = ?

!'" = $"%'"
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Redundant Problem 2

!"# = %#&"#

Redundant Problem 2

BA C

y

x

EI!"# MC

BA C

y

x

EI&"# 1

&"# = ?

From Tabulated Solutions
18 ft

18 ft

!##

&##

&## = ?

!## = %#&##



Compatibility Equation at Point A

!" + !""+!"$= 0
Compatibility at Point A

Compatibility Equation in terms of 
Redundant and Flexibility Coefficient

!" +'"("" +'$ ("$ = 0



Compatibility Equation at Point C

!" + !"$+ !""= 0
Compatibility at Point C

Compatibility Equation in terms of 
Redundant and Flexibility Coefficient

!$ +'$("$ +'" ("" = 0



Solve Compatibility Equations for MA and MC

!" +$"%"" +$& %"& = 0

!" +$"%&" +$& %&& = 0



A B

P

EI C

y

x
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MA

Cy

Free Body Diagram

A B

P

EI C

y

x

Ay Cy

Can now use 
equilibrium 
equations to find 
the remaining 
two unknowns

MA

12 ft 6 ft

12 ft 6 ft

MC

MC


