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Statically Indeterminate Structures

At the beginning of the course, we learned that a stable
structure that contains more unknowns than independent
equations of equilibrium is Statically Indeterminate.

Advantages

Disadvantages

* Redundancy (several members
must fail for the structure to
become unstable);

e Often maximum stresses 1s
certain members are reduced;

e Usually deflections are
reduced.

* Connections are often more
eXpensive;

* Finding forces and deflections
using hand analysis 1s much
more complicated.




Steps 1n Solving an Indeterminate

Structure using the Force Method
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Force Method of Analysis

‘ Consider the beam I
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Statically Indeterminate
to the 15 degree




Define Primary Structure and Redundants

Remove all applied loads from the actual structure;
Remove support reactions or internal forces to define a primary structure;
Removed reactions or internal forces are called redundants;

Same number of redundants as degree of indeterminacy

Primary structure must be stable and statically determinate;

Primary structure is not unique — there are several choices.
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Define and Solve the Primary Problem

Apply all loads on actual structure to the primary structure;
Define a reference coordinate system;

Calculate relevant deflections at points where redundants were
removed.




Detine and Solve the Redundant Problem

There are the same number of redundant problems as degrees of indeterminacy;
Define a reference coordinate system;

Apply only one redundant to the primary structure;

Write the redundant deflection in terms of the flexibility coefficient and the
redundant for each redundant problem.

Calculate the flexibility coefficient associated with the relevant deflections for
each redundant problem;
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Compatibility Equation
‘ Compatibility at Point C I
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‘ Solve for CI: |




The Force Method 1s Based on the
Principle of Superposition
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Problem

Primary
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[Lab Problem

For the indeterminate beam
from Lab 11, subject to the
point load at B, find the
support reactions at A and
C and construct the shear
and moment diagram for
the beam. Neglect axial
force effects.

Beam is stable

4 unknowns

2 equations of
equilibrium

Statically Indeterminate
to the 2"d degree




Define Primary Structure and Redundant

Remove all applied loads from the actual structure;

Remove support reactions or internal forces to define a primary structure;
Removed reactions or internal forces are called redundants;

Same number of redundants as degree of indeterminacy

Primary structure must be stable and statically determinate;

Primary structure is not unique — there are several choices.
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Define and Solve the Primary Problem

Apply all loads on actual structure to the primary structure;
Define a reference coordinate system;

Calculate relevant deflections at points where redundants were
removed.
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Tabulated
Solutions

Simply Supported Beam Slopes and Deflections

Beam Slope Deflection Elastic Curve
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Detine and Solve the Redundant Problems

There are the same number of redundant problems as degrees of indeterminacy;
Define a reference coordinate system;

Apply only one redundant to the primary structure;

Write the redundant deflection in terms of the flexibility coefficient and the
redundant for each redundant problem.

Calculate the flexibility coefficient associated with the relevant deflections for
each redundant problem;
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Tabulated
Solutions

Simply Supported Beam Slopes and Deflections

Beam Slope Deflection Elastic Curve
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Redundant Problem 2
‘ Redundant Problem 2 I
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Compatibility Equation at Point A
‘ Compatibility at Point A I

HA + HAA_I_HAC: 0
Compatibility Equation in terms of
Redundant and Flexibility Coefficient

HA + MAaAA +MC Xpc = 0




Compatibility Equation at Point C
‘ Compatibility at Point C I

HC + HCA_I_ HCC: 0
Compatibility Equation in terms of
Redundant and Flexibility Coefficient

HA + MAaCA ‘I‘MC Xec = 0




Solve Compatibility Equations for M, and M-

HA + MAaAA ‘l‘MC Xpc = 0

HA + MA“CA +MC Xec = 0



Free Body Diagram
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