
\qquad
\qquad
\qquad

Appendix A: Reviev of Math Essentials
- A. 1 Summation
- A. 2 Some Basics
- A. 3 Linear Relationships
- A. 4 Nonlinear Relationships

[^0]
A. 1 Summation

Rules of summation operation:
$\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\cdots+x_{n}$
$\sum_{i=1}^{n} a x_{i}=a \sum_{i=1}^{n} x_{i}$
$\sum_{i=1}^{n} a=a+a+\cdots+a=n a$
$\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)=\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} y_{i}$
Principles of Econometrics, 3rd Edition
Slide A-4

A. 1 Summation

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(a x_{i}+b y_{i}\right)=a \sum_{i=1}^{n} x_{i}+b \sum_{i=1}^{n} y_{i} \\
& \bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \\
& \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} \bar{x}=\sum_{i=1}^{n} x_{i}-n \bar{x}=\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} x_{i}=0
\end{aligned}
$$

A. 1 Summation
$\sum_{i=1}^{n} f\left(x_{i}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)$
$=\sum_{i} f\left(x_{i}\right)\left(\right.$ "Sum over all values of the index $\left.i^{\prime \prime}\right)$
$=\sum_{x} f(x) \quad$ ("Sum over all possible values of X ")
\qquad

A. 1 Summation

\qquad
$\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}, y_{j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(x_{i}+y_{j}\right)$
$\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}, y_{j}\right)=\sum_{i=1}^{m}\left[f\left(x_{i}, y_{1}\right)+f\left(x_{i}, y_{2}\right)+\cdots+f\left(x_{i}, y_{n}\right)\right]$ \qquad
$\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}, y_{j}\right)=\sum_{j=1}^{n} \sum_{i=1}^{m} f\left(x_{i}, y_{j}\right)$

A. 2 Some Blasics

- A.2.1 Numbers

Integers are the whole numbers, $0,1,2,3, \ldots .$. \qquad
Rational numbers can be written as a / b, where a and b are integers, and $b \neq 0$.

The real numbers can be represented by points on a line. There are an uncountable number of real numbers and they are not all rational. Numbers such as $\pi \cong 3.1415927$ and $\sqrt{2}$ are said to be irrational since they cannot be expressed as ratios, and have only decimal representations. Numbers like $\sqrt{-2}$ are not real numbers.

A. 2 Some Basics

The absolute value of a number is denoted $|a|$. It is the positive part
\qquad of the number, so that $|3|=3$ and $|-3|=3$.

Basic rules about Inequalities:
If $a<b$, then $a+c<b+c$
If $a<b$, then $\begin{cases}a c<b c & \text { if } c>0 \\ a c>b c & \text { if } c<0\end{cases}$
If $a<b$ and $b<c$, then $a<c$ \qquad

A. 2 Some Basics

- A.2.2 Exponents \qquad
$x^{n}=x x \cdots x \quad$ (n terms) if n is a positive integer \qquad
$x^{0}=1$ if $x \neq 0.0^{0}$ is not defined
Rules for working with exponents, assuming x and y are real, m and n are integers, and a and b are rational:
$x^{-n}=\frac{1}{x^{n}}$ if $x \neq 0$

A. 2 Some Basics	
$x^{1 / n}=\sqrt[n]{x}$	
$x^{m / n}=\left(x^{\prime \prime n}\right)^{m}$	
$x^{m / n}=\left(x^{\prime \prime n}\right)^{m}$	
$x^{a} x^{b}=x^{a+b}$	
$\left(\frac{x}{y}\right)^{a}=\frac{x^{a}}{y^{a}}$	
	Stle $A .11$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
A.2.3 Scientific Notation
$510,000 \times .00000034=\left(5.1 \times 10^{5}\right) \times\left(3.4 \times 10^{-7}\right)$ \qquad
\qquad
$=(5.1 \times 3.4) \times\left(10^{5} \times 10^{-7}\right)$
\qquad
$=.1734$
$\frac{510,000}{.00000034}=\frac{5.1 \times 10^{5}}{3.4 \times 10^{-7}}=\frac{5.1}{3.4} \times \frac{10^{5}}{10^{-7}}=1.5 \times 10^{12}$

$$
\ln (x)=\ln \left(e^{b}\right)=b
$$

Rules:
$\ln (x y)=\ln (x)+\ln (y)$ \qquad
$\ln (x / y)=\ln (x)-\ln (y)$
$\ln \left(x^{a}\right)=a \ln (x)$ \qquad
\qquad

A.2.4 Logarithms and the number e	
Table A.1	Some Natural Logarithms
x	$\ln (x)$
1	0
10	2.3025851
100	4.6051702
1000	6.9077553
10,000	9.2103404
100,000	11.512925
$1,000,000$	13.815511

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A.2.4 Legarithms and the number e
$\qquad x=e^{\ln (x)}=\exp [\ln (x)]$
The exponential function is the antilogarithm because we can recover
the value of x using it.
Principles of Econometrics, 3rd Edition

A. 3 Linear Relationships
 $\frac{\partial y}{\partial x_{2}}=\beta_{2}, \quad \frac{\partial y}{\partial x_{3}}=\beta_{3}$

A. 4 Nonlinear Relationships

Figure A. 2 A nonlinear relationship
\qquad

A.4.1 Quadratic Function

\qquad

$$
y=\beta_{1}+\beta_{2} x+\beta_{3} x^{2}
$$

If $\beta_{3}>0$, then the curve is U-shaped, and representative of average or \qquad marginal cost functions, with increasing marginal effects. If $\beta_{3}<0$, then the curve is an inverted-U shape, useful for total product curves, total revenue curves, and curves that exhibit diminishing marginal effects.

$$
d y / d x=\beta_{2}+2 \beta_{3} x=0, \text { or } x=-\beta_{2} /\left(2 \beta_{3}\right)
$$

A.4.2 Cubic Function

$$
y=\beta_{1}+\beta_{2} x+\beta_{3} x^{2}+\beta_{4} x^{3}
$$

- Cubic functions can have two inflection points, where the function crosses its tangent line, and changes from concave to convex, or vice versa.
- Cubic functions can be used for total cost and total product curves in economics. The derivative of total cost is marginal cost, and the derivative of total product is marginal product.
- If the "total" curves are cubic then the "marginal" curves are quadratic functions, a U-shaped curve for marginal cost, and an inverted-U shape for marginal product.
Principles of Econometrics, 3rd Edition

A.4.3 Reciprocal Function

$$
y=\beta_{1}+\beta_{2} \frac{1}{x}=\beta_{1}+\beta_{2} x^{-1}
$$

- Example: the Phillips Curve

$$
\begin{aligned}
& \% \Delta w_{t}=\frac{w_{t}-w_{t-1}}{w_{t-1}} \times 100 \\
& \% \Delta w_{t}=\beta_{1}+\beta_{2} \frac{1}{u_{t}}
\end{aligned}
$$

\qquad

$$
\ln (y)=\beta_{1}+\beta_{2} \ln (x)
$$

- In order to use this model all values of y and x must be positive. The slopes of these curves change at every point, but the elasticity is constant and equal to β_{2}.

A.4.5 Log-Linear Function
$\qquad \ln (y)=\beta_{1}+\beta_{2} x$
-Both its slope and elasticity change at each point and are the same sign as β_{2}. $\qquad \exp [\ln (y)]=y=\exp \left(\beta_{1}+\beta x\right)$ - The slope at any point is $\beta_{2} y$, which for $\beta_{2}>0$ means that the marginal effect increases for larger values of y.
Principles of Economerrics, 3rd Edition

A.4.6 Approximating Logarithms
$\ln \left(y_{1}\right) \cong \ln \left(y_{0}\right)+\frac{1}{y_{0}}\left(y_{1}-y_{0}\right)$
$\ln (1+x) \cong x$
$\ln \left(y_{1}\right)-\ln \left(y_{0}\right)=\Delta \ln (y) \cong \frac{1}{y_{0}}\left(y_{1}-y_{0}\right)=\frac{\Delta y}{y_{0}}=$ relative change in y
Principles of Economerrics, 3rd Edition

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\Delta y=y_{1}-y_{0}=\beta_{2}\left[\ln \left(x_{1}\right)-\ln \left(x_{0}\right)\right]
$$

$$
=\frac{\beta_{2}}{100} \times 100\left[\ln \left(x_{1}\right)-\ln \left(x_{0}\right)\right]
$$

$$
\cong \frac{\beta_{2}}{100}(\% \Delta x)
$$

\qquad
\qquad
\qquad
\qquad

A.4.8 Linear-Log Function

$$
\begin{aligned}
& y=\beta_{1}+\beta_{2} \ln (x)=0+500 \ln (x) \\
& \Delta y=\frac{\beta_{2}}{100}(\% \Delta x)=\frac{500}{100} \times 10=50
\end{aligned}
$$

Feymardes		
- absolute value - antilogarithm - asymptote - ceteris paribus - cubic function - derivative - double summation - e - elasticity - exponential function - exponents - inequalities - integers - intercept - irrational numbers - linear relationship - logarithm	- log-linear function - log-log function - marginal effect - natural logarithm - nonlinear relationship - partial derivative - percentage change - Phillips curve - quadratic function - rational numbers - real numbers - reciprocal function - relative change - scientific notation - slope - summation sign	
Principles of Econometrics, 3rd Edition		Slide A-38

[^0]: A. 1 Summation

 $$
 \sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\cdots+x_{n}
 $$

 - The symbol Σ is the capital Greek letter sigma, and means "the sum of."
 - The letter i is called the index of summation. This letter is arbitrary and may also appear as t, j, or k.
 - The expression $\sum_{i=1}^{n} x_{i}$ is read "the sum of the terms x_{i}, from i equal one to n."
 - The numbers 1 and n are the lower limit and upper limit of summation.

 Principles of Econometrics, 3rd Edition

