
\qquad
\qquad
\qquad

Appendix B: Review of Probability
Concepts
- B. 1 Random Variables
- B. 2 Probability Distributions
- B. 3 Joint, Marginal and Conditional Probability
Distributions
- B. 4 Properties of Probability Distributions
- B. 5 Some Important Probability Distributions
Principlesof Fconomericis, 3rd Edition

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

B. 1 Random Variables

- A random variable is a variable whose value is unknown until it is
\qquad observed.
- A discrete random variable can take only a limited, or countable,
\qquad number of values.
- A continuous random variable can take any value on an interval. \qquad
\qquad
\qquad
\qquad

B. 2 Probability Distributions

- The probability of an event is its "limiting relative frequency," or the proportion of time it occurs in the long-run. \qquad
- The probability density function (pdf) for a discrete random variable indicates the probability of each possible value occurring.

$$
\begin{gathered}
f(x)=P(X=x) \\
f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)=1
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
B. 2 Probability Distributions

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

B. 2 Probability Distributions

- The cumulative distribution function (cdf) is an alternative way to represent probabilities. The $c d f$ of the random variable X, denoted \qquad $F(\mathrm{x})$, gives the probability that X is less than or equal to a specific value x.

$$
F(x)=P(X \leq x)
$$

B. 2 Probability Distributions

B. 2 Probability Distributions

- For example, a binomial random variable X is the number of \qquad successes in n independent trials of identical experiments with probability of success p.
\qquad

$$
P(X=x)=f(x)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

$\binom{n}{x}=\frac{n!}{x!(n-x)!}$ where $n!=n((n-1)(n-2) \cdots(2)(1)$

B. 2 Probability Distributions

Figure B. 2 PDF of a continuous random variable
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

B. 3 Joint, Marginal and Conditional Probability Distributions

$$
\sum_{x} \sum_{y} f(x, y)=1
$$

B.3.2 Conditional Probability

$$
f(y \mid x)=P(Y=y \mid X=x)=\frac{P(Y=y, X=x)}{P(X=x)}=\frac{f(x, y)}{f_{X}(x)}
$$

inciples of Econometrics, 3rd Edition
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

B.3.2 Conditional Probability

- Two random variables are statistically independent if the conditional probability that $Y=y$ given that $X=x$, is the same as the unconditional probability that $Y=y$.

$$
P(Y=y \mid X=x)=P(Y=y)
$$

$$
\begin{equation*}
f(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=f_{Y}(y) \tag{B.5}
\end{equation*}
$$

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

(B.6)

Principles of Econometrics, 3rd Edition

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

B. 4 Properties of Probability Distributions

- B.4.1 Mean, median and mode
$E[X]=x_{1} P\left(X=x_{1}\right)+x_{2} P\left(X=x_{2}\right)+\cdots+x_{n} P\left(X=x_{n}\right)$
- For a discrete random variable the expected value is:
$\mu=E[X]=x_{1} f\left(x_{1}\right)+x_{2} f\left(x_{2}\right)+\cdots+x_{n} f\left(x_{n}\right)$

$$
\begin{equation*}
=\sum_{i=1}^{n} x_{i} f\left(x_{i}\right)=\sum_{x} x f(x) \tag{B.8}
\end{equation*}
$$

Principles of Econometrics, 3 rd Edition

B.4.1 Mean, median and mode

- For a continuous random variable the expected value is:

$$
\mu=E[X]=\int_{-\infty}^{\infty} x f(x) d x
$$

The mean has a flaw as a measure of the center of a probability distribution in that it can be pulled by extreme values.

B.4.1 Mean, median and mode

- For a continuous distribution the median of X is the value m such that

$$
P(X>m)=P(X<m)=.5
$$

- In symmetric distributions, like the familiar "bell-shaped curve" of the normal distribution, the mean and median are equal.
- The mode is the value of X at which the $p d f$ is highest.

Principles of Econometrics, 3rd Edition

B.4.2 Expected values of functions of a random variable	
- The variance of a random variable is important in characterizing the	
scale of measurement, and the spread of the probability distribution.	
- Algebraically, letting $E(X)=\mu$,	
$\operatorname{var}(X)=\sigma^{2}=E[X-\mu]^{2}=E\left[X^{2}\right]-\mu^{2}$	(B.13)

B.4.2 Expected values of functions of a random variable

Figure B. 3 Distributions with different variances

B.4.2 Expected values of functions of a random varlable

$\operatorname{var}(a X+b)=a^{2} \operatorname{var}(X)$

$\operatorname{var}(a X+b)=E[a X+b-E(a X+b)]^{2}=E[a X+b-a \mu-b]^{2}$

$$
=E[a(X-\mu)]^{2}=a^{2} E(X-\mu)^{2}=a^{2} \operatorname{var}(X)
$$

B.4.2 Expected values of functions of a random variable
skewness $=\frac{E\left[(X-\mu)^{3}\right]}{\sigma^{3}}$
kurtosis $=\frac{E\left[(X-\mu)^{4}\right]}{\sigma^{4}}$

B.4.3 Expected values of several random variables

$\operatorname{cov}(X, Y)=\sigma_{X Y}=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E[X Y]-\mu_{X} \mu_{Y} \quad$ (B.19)

$$
\rho=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)} \sqrt{\operatorname{var}(Y)}}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}
$$

- If X and Y are independent random variables then the covariance and correlation between them are zero. The converse of this relationship is not true.
rinciples of Econometrics, 3rd Edition

\qquad

$$
\begin{aligned}
E & (X)=\sum_{x=1}^{4} \times f(x)=(1 \times .1)+(2 \times .2)+(3 \times .3)+(4 \times .4)=3=\mu_{X} \\
\sigma_{X}^{2} & =E\left(X-\mu_{x}\right)^{2} \\
& =\left[(1-3)^{2} \times .1\right]+\left[(2-3)^{2} \times .2\right]+\left[(3-3)^{2} \times .3\right]+\left[(4-3)^{2} \times .4\right] \\
& =(4 \times .1)+(1 \times .2)+(0 \times .3)+(1 \times .4) \\
& =1 \\
&
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

B. 5 Some Important Probability Distributions

- B.5.1 The Normal Distribution
- If X is a normally distributed random variable with mean μ and
\qquad
\qquad
\qquad variance σ^{2}, it can be symbolized as $X \sim N\left(\mu, \sigma^{2}\right)$.

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right], \quad-\infty<x<\infty
$$

\qquad
\qquad
\qquad

[^0]\qquad
\qquad
\qquad
\qquad
\qquad

B.5.1 The Normal Distribution

Figure B.5b Normal Probability Density Functions with Mean 0 and Variance σ^{2}

B.5.1 The Normal Distribution

- A standard normal random variable is one that has a normal probability density function with mean 0 and variance 1 .

$$
\begin{equation*}
Z=\frac{X-\mu}{\sigma} \sim N(0,1) \tag{B.27}
\end{equation*}
$$

- The $c d f$ for the standardized normal variable Z is $\Phi(z)=P(Z \leq z)$.

B.5.1 The Normal Distribution

$$
\begin{equation*}
P[X \leq a]=P\left[\frac{X-\mu}{\sigma} \leq \frac{a-\mu}{\sigma}\right]=P\left[Z \leq \frac{a-\mu}{\sigma}\right]=\Phi\left(\frac{a-\mu}{\sigma}\right) \tag{B.28}
\end{equation*}
$$

$$
P[X>a]=P\left[\frac{X-\mu}{\sigma}>\frac{a-\mu}{\sigma}\right]=P\left[Z>\frac{a-\mu}{\sigma}\right]=1-\Phi\left(\frac{a-\mu}{\sigma}\right)
$$

$$
P[a \leq X \leq b]=P\left[\frac{a-\mu}{\sigma} \leq Z \leq \frac{b-\mu}{\sigma}\right]=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right)
$$

B.5.1 The Normal Distribution

- A weighted sum of normal random variables has a normal distribution.
$X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$
$X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$
$Y=a_{1} X_{1}+a_{2} X_{2} \sim N\left(\mu_{Y}=a_{1} \mu_{1}+a_{2} \mu_{2}, \sigma_{Y}^{2}=a_{1}^{2} \sigma_{1}^{2}+a_{2}^{2} \sigma_{2}^{2}+2 a_{1} a_{2} \sigma_{12}\right) \quad$ (B.27)
rinciples of Econometrics, 3rd Edition
Slide B-43

B.5.3 The t-Distribution
- A " t " random variable (no upper case) is formed by dividing a standard normal random variable $Z \sim N(0,1)$ by the square root of an independent chi-square random variable, $V \sim \chi_{(m)}^{2}$, that has been divided by its degrees of freedom m.

$$
t=\frac{Z}{\sqrt{V / m}} \sim t_{(m)}
$$

Principles of Econometrics, 3rd Edition

B.5.4 The F-Distribution

Figure B. 8 The probability density function of an F random variable

[^0]: B.5.1 The Normal Distribution

 Figure B.5a Normal Probability Density Functions with Means μ and Variance 1
 inciples of Econometrics, ,rd Edition

