The Simple Linear Regression Model: Specification and Estimation

Chapter 2

Prepared by Vera Tabakova, East Carolina University

Chapter 2:
 The Simple Regression Model

- 2.1 An Economic Model \qquad
- 2.2 An Econometric Model
- 2.3 Estimating the Regression Parameters
- 2.4 Assessing the Least Squares Estimators
\qquad
- 2.5 The Gauss-Markov Theorem
- 2.6 The Probability Distributions of the Least \qquad Squares Estimators
- 2.7 Estimating the Variance of the Error Term \qquad

Principles of Econometrics, 3rd Edition

2.1 An Economic Model

$f(y \mid x=1000)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2.1 An Economic Model

- The simple regression function
$E(y \mid x)=\mu_{y \mid x}=\beta_{1}+\beta_{2} x$ (2.1)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model - I

The mean value of y, for each value of x, is given by the linear regression

$$
E(y \mid x)=\beta_{1}+\beta_{2} x
$$

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model - I
For each value of x, the values of y are distributed about their mean value, following probability distributions that all have the same variance,

$$
\operatorname{var}(y \mid x)=\sigma^{2}
$$

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model - I

The sample values of y are all uncorrelated, and have zero covariance, implying that there is no linear association among them,

$$
\operatorname{cov}\left(y_{i}, y_{j}\right)=0
$$

This assumption can be made stronger by assuming that the \qquad values of y are all statistically independent.

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model - I

\qquad
The variable x is not random, and must take at least two different values.
\qquad
\qquad
\qquad

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model - I
(optional) The values of y are normally distributed about their mean for each value of x,

$$
y \sim N\left[\beta_{1}+\beta_{2} x, \sigma^{2}\right]
$$

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model - I

Principles of Econometrics, 3rd Edition

2.2 An Econometric Model

- 2.2.1 Introducing the Error Term \qquad
- The random error term is defined as

$$
e=y-E(y \mid x)=y-\beta_{1}-\beta_{2} x
$$

- Rearranging gives

$$
y=\beta_{1}+\beta_{2} x+e
$$

y is dependent variable; x is independent variable

2.2 An Econometric Model

The expected value of the error term, given x, is

$$
E(e \mid x)=E(y \mid x)-\beta_{1}-\beta_{2} x=0
$$

The mean value of the error term, given x, is zero.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model - II

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model - II
SR2. The expected value of the random error e is

$$
E(e)=0
$$

\qquad
Which is equivalent to assuming that

$$
E(y)=\beta_{1}+\beta_{2} x
$$

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model - II
SR3. The variance of the random error e is

$$
\operatorname{var}(e)=\sigma^{2}=\operatorname{var}(y)
$$

\qquad
\qquad
The random variables y and e have the same variance
\qquad

Principles of Econometrics, 3rd Edition \qquad

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model - II

\qquad
SR4. The covariance between any pair of random errors,
e_{i} and e_{j} is

$$
\operatorname{cov}\left(e_{i}, e_{j}\right)=\operatorname{cov}\left(y_{i}, y_{j}\right)=0
$$

\qquad
The stronger version of this assumption is that the random errors e are statistically independent, in which case the values
of the dependent variable y are also statistically independent.
Principles of Econometrics, 3rd Edition

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model - II

SR5. The variable x is not random, and must take at least two \qquad different values. \qquad
\qquad
\qquad

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model - II
SR6. (optional) The values of e are normally distributed about their mean

$$
e \sim N\left(0, \sigma^{2}\right)
$$

if the values of y are normally distributed, and vice versa. \qquad
\qquad
\qquad

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model - II

\qquad
\qquad
-SR1. $y=\beta_{1}+\beta_{2} x+e$
\qquad
-SR3. $\operatorname{var}(e)=\sigma^{2}=\operatorname{var}(y)$
-SR4. $\operatorname{cov}\left(e_{i}, e_{j}\right)=\operatorname{cov}\left(y_{i}, y_{j}\right)=0$
-SR5. The variable x is not random, and must take at least two different values.
-SR6. (optional) The values of e are normally distributed about their mean $e \sim N\left(0, \sigma^{2}\right)$ \qquad
\qquad
\qquad
2.2 An Econometric Model

Figure 2.5 The relationship among y, e and the true regression line Principles of Econometrics, 3rd Edition

2.3 Estimating The Regression Parameters

Figure 2.6 Data for food expenditure example
Principles of Econometrics, 3rd Edition
\qquad

2.3 Estimating The Regression Parameters

- 2.3.1 The Least Squares Principle
- The fitted regression line is

$$
\hat{y}_{i}=b_{1}+b_{2} x_{i}
$$

- The least squares residual

$$
\hat{e}_{i}=y_{i}-\hat{y}_{i}=y_{i}-b_{1}-b_{2} x_{i}
$$

2.3 Estimating The Regression Parameters

Figure 2.7 The relationship among y, $\hat{\mathrm{e}}$ and the fitted regression line
Principles of Econometrics, 3rd Edition

2.3 Estimating The Regression Parameters

- Any other fitted line

$$
\hat{y}_{i}^{*}=b_{1}^{*}+b_{2}^{*} x_{i}
$$

- Least squares line has smaller sum of squared residuals
if $S S E=\sum_{i=1}^{N} \hat{e}_{i}^{2}$ and $S S E^{*}=\sum_{i=1}^{N} \hat{e}_{i}^{* 2}$ then $S S E<S S E^{*}$
\qquad

2.3 Estimating The Regression Parameters

- Least squares estimates for the unknown parameters β_{1} and β_{2} are obtained my minimizing the sum of squares function

$$
S\left(\beta_{1}, \beta_{2}\right)=\sum_{i=1}^{N}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)^{2}
$$

2.3 Estimating The Regression Parameters

- The Least Squares Estimators \qquad
\qquad

$$
\begin{equation*}
b_{2}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
b_{1}=\bar{y}-b_{2} \bar{x} \tag{2.8}
\end{equation*}
$$

\qquad
\qquad
\qquad

2.3 Estimating The Regression Parameters

- 2.3.2 Estimates for the Food Expenditure Function \qquad $b_{2}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{18671.2684}{1828.7876}=10.2096$ $b_{1}=\bar{y}-b_{2} \bar{x}=283.5735-(10.2096)(19.6048)=83.4160$

A convenient way to report the values for b_{1} and b_{2} is to write out the estimated or fitted regression line:

$$
\hat{y}_{i}=83.42+10.21 x_{i}
$$

\qquad

Figure 2.8 The fitted regression line
Principles of Econometrics, 3rd Edition

2.3 Estimating The Regression Parameters

- 2.3.3 Interpreting the Estimates
- The value $b_{2}=10.21$ is an estimate of β_{2}, the amount by which weekly expenditure on food per household increases when household weekly income increases by $\$ 100$. Thus, we estimate that if income goes up by $\$ 100$, expected weekly expenditure on food will increase by approximately $\$ 10.21$.
- Strictly speaking, the intercept estimate $b_{1}=83.42$ is an estimate of the weekly food expenditure on food for a household with zero income.

2.3 Estimating The Regression Parameters

- 2.3.3a Elasticities
- Income elasticity is a useful way to characterize the responsiveness of consumer expenditure to changes in income. The elasticity of a variable y with respect to another variable x is
$\varepsilon=\frac{\text { percentage change in } y}{\text { percentage change in } x}=\frac{\Delta y / y}{\Delta x / x}=\frac{\Delta y}{\Delta x} \frac{x}{y}$
- In the linear economic model given by (2.1) we have shown that
\qquad
\qquad

$$
\beta_{2}=\frac{\Delta E(y)}{\Delta x}
$$

rinciples of Econometrics, 3rd Edition
\qquad

2.3 Estimating The Regression Parameters

- The elasticity of mean expenditure with respect to income is

$$
\varepsilon=\frac{\Delta E(y) / E(y)}{\Delta x / x}=\frac{\Delta E(y)}{\Delta x} \cdot \frac{x}{E(y)}=\beta_{2} \cdot \frac{x}{E(y)}
$$

- A frequently used alternative is to calculate the elasticity at the "point of the means" because it is a representative point on the regression line.

$$
\hat{\varepsilon}=b_{2} \frac{\bar{x}}{\bar{y}}=10.21 \times \frac{19.60}{283.57}=.71
$$

2.3 Estimating The Regression Parameters

- 2.3.3b Prediction
- Suppose that we wanted to predict weekly food expenditure for a household with a weekly income of $\$ 2000$. This prediction is carried out by substituting $x=20$ into our estimated equation to obtain

$$
\hat{y}_{i}=83.42+10.21 x_{i}=83.42+10.21(20)=287.61
$$

- We predict that a household with a weekly income of $\$ 2000$ will \qquad spend $\$ 287.61$ per week on food.
\qquad

2.3 Estimating The Regression Parameters

- 2.3.3c Examining Computer Output \qquad
\qquad

Depoadent Variatle: FOOD EXP Wethod Leas Square ample: 140 taclabed observations: to				
	Coeflicict	Stac. Emor	1 Susisisic	Preat
	83.41600	43.41016	1921578	0.062
ncome	10.3064	209364	4577381	00000
2-pured	0.38502	Mcen dipeader var 28.1578		
Mound R-qued	0368818			
EE of reposion	89.51700	Alaike info citerion 11.8754		
Sam spured reid	304ses 2	Schate info ciutico		
Log lactiood	-2350088	Hemus-Ouikn crikerDutio-Wuton star		
Pstaisic				
mFantis	0.00009			

Figure 2.9 EViews Regression Outpu \qquad

2.3 Estimating The Regression Parameters

\qquad

- 2.3.4 Other Economic Models \qquad
- The "log-log" model

$$
\begin{aligned}
& \ln (y)=\beta_{1}+\beta_{2} \ln (x) \\
& \frac{d[\ln (y)]}{d x}=\frac{1}{y} \cdot \frac{d y}{d x} \\
& \frac{d\left[\beta_{1}+\beta_{2} \ln (x)\right]}{d x}=\frac{1}{x} \cdot \beta_{2} \\
& \beta_{2}=\frac{d y}{d x} \cdot \frac{x}{y}
\end{aligned}
$$

2.4 Assessing the Least Squares Estimators

- 2.4.1 The estimator b_{2} \qquad
$b_{2}=\sum_{i=1}^{N} w_{i} y_{i}$ (2.10)

$$
w_{i}=\frac{x_{i}-\bar{x}}{\sum\left(x_{i}-\bar{x}\right)^{2}}
$$

$b_{2}=\beta_{2}+\sum w_{i} e_{i}$ (2.12)

2.4 Assessing the Least Squares Estimators

- 2.4.2 The Expected Values of b_{1} and b_{2}
- We will show that if our model assumptions hold, then $E\left(b_{2}\right)=\beta_{2}$, which means that the estimator is unbiased
- We can find the expected value of b_{2} using the fact that the expected value of a sum is the sum of expected values

$$
\begin{align*}
E\left(b_{2}\right) & =E\left(\beta_{2}+\sum w_{i} e_{i}\right)=E\left(\beta_{2}+w_{1} e_{1}+w_{2} e_{2}+\cdots+w_{N} e_{N}\right) \\
& =E\left(\beta_{2}\right)+E\left(w_{1} e_{1}\right)+E\left(w_{2} e_{2}\right)+\cdots+E\left(w_{N} e_{N}\right) \tag{2.13}\\
& =E\left(\beta_{2}\right)+\sum E\left(w_{i} e_{i}\right) \\
& =\beta_{2}+\sum w_{i} E\left(e_{i}\right)=\beta_{2}
\end{align*}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
using $E\left(w_{i} e_{i}\right)=w_{i} E\left(e_{i}\right)$ and $E\left(e_{i}\right)=0$

2.4 Assassing the Least Squamas Esimators			
2.4.3 Repeated Sampling			
Table 2.2	from 10		
Sample	b_{1}	b_{2}	
1	131.69	6.48	
2 3	57.25 103.91	10.88	
3 4	103.91 46.50	8.14 11.90	
5	84.23	9.29	
6	26.63	13.55	
7	64.21	10.93	
8 9	79.66 97.30	9.76 8.05	
10	95.96	7.77	
Principles of Econometrics, 3rd Edition			Slide 2-43

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2.4 Assessing the Least Squares Estimators

- 2.4.4 The Variances and Covariances of b_{1} and b_{2}
- If the regression model assumptions SR1-SR5 are correct (assumption SR6 is not required), then the variances and covariance of b_{1} and b_{2} are: \qquad

- 2.4.4 The Variances and Covariances of b_{1} and b_{2}
- The larger the variance term σ^{2}, the greater the uncertainty there is in the statistical model, and the larger the variances and covariance of the least squares estimators.
- The larger the sum of squares, $\sum\left(x_{i}-\bar{x}\right)^{2}$, the smaller the variances of the least squares estimators and the more precisely we can estimate the unknown parameters.
- The larger the sample size N, the smaller the variances and covariance of the least squares estimators
- The larger this term $\sum x_{i}^{2}$ is, the larger the variance of the least squares estimator b_{1}.
- The absolute magnitude of the covariance increases the larger in magnitude is the sample mean \bar{X}, and the covariance has a sign opposite to that of \bar{x}. \qquad Principles of Econometrics, 3rd Edition Slide 2-46

2.4 Assessing the Least Squares Estimators

- The variance of b_{2} is defined as $\operatorname{var}\left(b_{2}\right)=E\left[b_{2}-E\left(b_{2}\right)\right]^{2}$

Figure 2.11 The influence of variation in the explanatory variable x on precision of estimation (a) Low x variation, low precision (b) High x variation, high precision \qquad

Principles of Econometrics, 3rd Edition
Slide 2-47

2.5 The Gauss-Markov Theorem

Gauss-Markov Theorem: Under the assumptions \qquad
\qquad
b_{1} and b_{2} have the smallest variance of all linear and
\qquad
\qquad

2.5 The Gauss-Markov Theorem

1. The estimators b_{1} and b_{2} are "best" when compared to similar estimators, those which are linear and unbiased. The Theorem does not say that b_{1} and b_{2} are the best of all possible estimators.
2. The estimators b_{1} and b_{2} are best within their class because they have the minimum variance. When comparing two linear and unbiased estimators, we always want to use the one with the smaller variance, since that estimation rule gives us the higher probability of obtaining an estimate that is close to the true parameter value.
3. In order for the Gauss-Markov Theorem to hold, assumptions SR 1-SR 5 must be true. If any of these assumptions are not true, then b_{1} and b_{2} are not the best linear unbiased estimators of β_{1} and β_{2}.

2.5 The Gauss-Markov Theorem

4. The Gauss-Markov Theorem does not depend on the assumption of normality (assumption SR6).
5. In the simple linear regression model, if we want to use a linear and unbiased estimator, then we have to do no more searching. The estimators b_{1} and b_{2} are the ones to use. This explains why we are studying these estimators and why they are so widely used in research, not only in economics but in all social and physical sciences as well.
6. The Gauss-Markov theorem applies to the least squares estimators. It does not apply to the least squares estimates from a single sample.

Slide 2-50

2.6 The Probability Distributions of the Least Squares Estimators

- If we make the normality assumption (assumption SR6 about the error term) then the least squares estimators are normally distributed

A Central Limit Theorem: If assumptions SR1-SR5 hold, and if the sample size N is sufficiently large, then the least squares estimators have a distribution that approximates the normal distributions shown in (2.17) and (2.18).
2.7 Estimating the Varlance of the Error Term

The variance of the random error e_{i} is

$$
\operatorname{var}\left(e_{i}\right)=\sigma^{2}=E\left[e_{i}-E\left(e_{i}\right)\right]^{2}=E\left(e_{i}^{2}\right)
$$

if the assumption $E\left(e_{i}\right)=0$ is correct.
Since the "expectation" is an average value we might consider estimating σ^{2} as the average of the squared errors,

$$
\hat{\sigma}^{2}=\frac{\sum e_{i}^{2}}{N}
$$

Recall that the random errors are

$$
e_{i}=y_{i}-\beta_{1}-\beta_{2} x_{i}
$$

Principles of Econometrics, 3rd Edition

2.7 Estimating the Variance of the Error Term

The least squares residuals are obtained by replacing the unknown parameters by their least squares estimates,

$$
\begin{gathered}
\hat{e}_{i}=y_{i}-\hat{y}_{i}=y_{i}-b_{1}-b_{2} x_{i} \\
\hat{\sigma}^{2}=\frac{\sum \hat{e}_{i}^{2}}{N}
\end{gathered}
$$

\qquad
\qquad
There is a simple modification that produces an unbiased estimator, and that is

$E\left(\hat{\sigma}^{2}\right)=\sigma^{2}$

Principles of Econometrics, 3rd Edition
Slide 2-53
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2.7 Estimating the Variance of the Error Term	
The least squares residuals are obtained by replacing the unknown parameters by their least squares estimates,	
$\hat{e}_{i}=y_{i}-\hat{y}_{i}=y_{i}-b_{1}-b_{2} x_{i}$	
$\hat{\sigma}^{2}=\frac{\sum e_{1}^{2}}{N}$	
There is sasimple modification that produces an unbiased estimator, and that is	
$\hat{\sigma}^{2}=\frac{\sum e_{e}^{2}}{N-2}$	9)

\qquad
\qquad
\qquad
\qquad
\qquad

2.7.1 Estimating the Variances and Covariances

 of the Least Squares Estimators- Replace the unknown error variance σ^{2} in $(2.14)-(2.16)$ by $\hat{\sigma}^{2}$ to obtain: \qquad
$\widehat{\operatorname{var}\left(\vec{b}_{1}\right)}=\hat{\sigma}^{2}\left[\frac{\sum x_{i}^{2}}{N \sum\left(x_{i}-\bar{x}\right)^{2}}\right] \quad(2.20)$
\square
$\overline{\left.\operatorname{cov}\left(b_{1}, b_{2}\right)=\hat{\sigma}^{2}\left[\frac{-\bar{x}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right] \quad(2.22) \right\rvert\,}$

2.7.1 Estimating the Varlances and Covarlances of the Least Squares Estimators

- The square roots of the estimated variances are the "standard errors" of b_{1} and b_{2}
$\operatorname{se}\left(b_{1}\right)=\sqrt{\sqrt{\operatorname{var}\left(b_{1}\right)}}$
$\operatorname{se}\left(b_{2}\right)=\sqrt{\operatorname{var(b_{2})}}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2.7.2 Calculations for the Food Expenditure Data \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2.7.2 Calculations for the Food Expenditure Data
- The estimated variances and covariances for a regression are arrayed
\qquad in a rectangular array, or matrix, with variances on the diagonal and covariances in the "off-diagonal" positions. \qquad

$$
\left[\begin{array}{cc}
\widehat{\operatorname{var}\left(b_{1}\right)} & \widehat{\operatorname{cov}\left(b_{1}, b_{2}\right)} \\
\frac{\operatorname{cov}\left(b_{1}, b_{2}\right)}{} & \operatorname{var}\left(b_{2}\right)
\end{array}\right]
$$

2.7.2 Calculations for the Food Expenditure Data

- For the food expenditure data the estimated covariance matrix is:

	C	INCOME
C	1884.442	-85.90316
INCOME	-85.90316	4.381752

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

	Keywords
- assumptions - asymptotic - B.L.U.E. - biased estimator - degrees of freedom - dependent variable - deviation from the mean form - econometric model - economic model - elasticity - Gauss-Markov Theorem - heteroskedastic	- homoskedastic - sampling precision - independent variable - least squares - sampling properties estimates - simple linear - least squares estimators - specification error - least squares principle - unbiased estimator - least squares residuals - linear estimator - prediction - random error term - regression model - regression parameters - repeated sampling
Principles of Econometrics, 3rd Edition	Slide 2-60

Chapter 2 Appendices

- Appendix 2A Derivation of the least squares estimates
- Appendix 2B Deviation from the mean form of b_{2}
- Appendix $2 \mathrm{C} b_{2}$ is a linear estimator
- Appendir 2D Derivation of Theoretical Expression for b_{z}
- Apperdix $2 \mathbf{E}$ Deriving the variance of b_{z}
- Appendix $2 F$ Proof of the Gauss-Markov Theorem

Principles of Econometrics, 3rd Edition

Appendix 2A
 Derivation of the least squares estimates

$S\left(\beta_{1}, \beta_{2}\right)=\sum_{i=1}^{N}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)^{2}$	$(2 A .1)$
$\frac{\partial S}{\partial \beta_{1}}=2 N \beta_{1}-2 \sum y_{i}+2\left(\sum x_{i}\right) \beta_{2}$	
$\frac{\partial S}{\partial \beta_{2}}=2\left(\sum x_{i}^{2}\right) \beta_{2}-2 \sum x_{i} y_{i}+2\left(\sum x_{i}\right) \beta_{1}$	

Principles of Econometrics, 3rd Edition

Appendlx 2A
Derivation of the least squares estimates

$2\left[\sum y_{i}-N b_{1}-\left(\sum x_{i}\right) b_{2}\right]=0$	
$2\left[\sum x_{i} y_{i}-\left(\sum x_{i}\right) b_{1}-\left(\sum x_{i}^{2}\right) b_{2}\right]=0$	$(2 \mathrm{~A} .3)$
$N b_{1}+\left(\sum x_{i}\right) b_{2}=\sum y_{i}$	$(2 \mathrm{~A} .4)$
$\left(\sum x_{i}\right) b_{1}+\left(\sum x_{i}^{2}\right) b_{2}=\sum x_{i} y_{i}$	$(2 \mathrm{~A} .5)$
$b_{2}=\frac{N \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{N \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}$	
Slide 2-64	

Appendix 2 B
 Deviation From The Mean Form of $\boldsymbol{b}_{\mathbf{2}}$

Slide 2-65
Appendix 2B
Deviation From The Mean Form of b_{2}

We can rewrite b_{2} in deviation from the mean form as:
$b_{2}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}$

Appendlx 2C
b_{2} is a Linear Estimator
$\sum\left(x_{i}-\bar{x}\right)=0$
$b_{2}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum\left(x_{i}-\bar{x}\right) y_{i}-\bar{y} \sum\left(x_{i}-\bar{x}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}$
$=\frac{\sum\left(x_{i}-\bar{x}\right) y_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\sum\left[\frac{\left(x_{i}-\bar{x}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right] y_{i}=\sum w_{i} y_{i}$
Principles of Econometrics, 3rd Edition

Appendix 2D

Derlvation of Theoretical Expression for $\mathbf{b}_{\mathbf{2}}$

To obtain (2.12) replace y_{i} in (2.11) by $y_{i}=\beta_{1}+\beta_{2} x_{i}+e_{i}$ and simplify:

$$
\begin{aligned}
b_{2} & =\sum w_{i} y_{i}=\sum w_{i}\left(\beta_{1}+\beta_{2} x_{i}+e_{i}\right) \\
& =\beta_{1} \sum w_{i}+\beta_{2} \sum w_{i} x_{i}+\sum w_{i} e_{i} \\
& =\beta_{2}+\sum w_{i} e_{i}
\end{aligned}
$$

Principles of Econometrics, 3rd Edition
\qquad

Appendix 2D
Dervation of Theorelleal Expression for b_{2}

$$
\begin{gathered}
\sum w_{i}=\sum\left[\frac{\left(x_{i}-\bar{x}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]=\frac{1}{\sum\left(x_{i}-\bar{x}\right)^{2}} \sum\left(x_{i}-\bar{x}\right)=0 \\
\sum w_{i} x_{i}=1 \\
\beta_{2} \sum w_{i} x_{i}=\beta_{2} \\
\sum\left(x_{i}-\bar{x}\right)=0
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Appendtx 2D

Derivation of Theoretical Expression for b_{2}

$$
\begin{aligned}
\sum\left(x_{i}-\bar{x}\right)^{2} & =\sum\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right) \\
& =\sum\left(x_{i}-\bar{x}\right) x_{i}-\bar{x} \sum\left(x_{i}-\bar{x}\right) \\
& =\sum\left(x_{i}-\bar{x}\right) x_{i} \\
\sum w_{i} x_{i}= & \frac{\sum\left(x_{i}-\bar{x}\right) x_{i}}{\sum\left(x_{i}-\overline{-}\right)^{2}}=\frac{\sum\left(x_{i}-\bar{x}\right) x_{i}}{\sum\left(x_{i}-\bar{x}\right) x_{i}}=1
\end{aligned}
$$

Appendix 2E
 Deriving the Varlance of b_{2}

$$
\begin{gathered}
b_{2}=\beta_{2}+\sum w_{1} e_{1} \\
\operatorname{var}\left(b_{2}\right)=E\left[b_{2}-E\left(b_{2}\right)\right]^{2}
\end{gathered}
$$

Appendix 2E
Deriving the Variance of $\boldsymbol{b}_{\mathbf{2}}$

$\operatorname{var}\left(b_{2}\right)$ $=E\left[\beta_{2}+\sum w_{i} e_{i}-\beta_{2}\right]^{2}$ $=E\left[\sum w_{i} e_{i}\right]^{2}$ $=E\left[\sum w_{i}^{2} e_{i}^{2}+2 \sum \sum_{i \neq j} w_{i} w_{j} e_{i} e_{j}\right]$	[square of bracketed term]	
	$=\sum w_{i}^{2} E\left(e_{i}^{2}\right)+2 \sum \sum_{i \neq j} w_{i} w_{j} E\left(e_{i} e_{j}\right)$	[because w_{i} not random]
	$=\sigma^{2} \sum w_{i}^{2}$	
	$=\frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}$	
Principles of Econometrics, 3rd Edition	Slide 2-72	

Appendix 2E
Deriving the Variance of b_{2}
$\sigma^{2}=\operatorname{var}\left(e_{i}\right)=E\left[e_{i}-E\left(e_{i}\right)\right]^{2}=E\left[e_{i}-0\right]^{2}=E\left(e_{i}^{2}\right)$
$\operatorname{cov}\left(e_{i}, e_{j}\right)=E\left[\left(e_{i}-E\left(e_{i}\right)\right)\left(e_{j}-E\left(e_{j}\right)\right)\right]=E\left(e_{i} e_{j}\right)=0$
$\sum w_{i}^{2}=\sum\left[\frac{\left(x_{i}-\bar{x}\right)^{2}}{\left\{\sum\left(x_{i}-\bar{x}\right)^{2}\right\}^{2}}\right]=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{\left\{\sum\left(x_{i}-\bar{x}\right)^{2}\right\}^{2}}=\frac{1}{\sum\left(x_{i}-\bar{x}\right)^{2}}$
$\operatorname{var}(a X+b Y)=a^{2} \operatorname{var}(X)+b^{2} \operatorname{var}(Y)+2 a b \operatorname{cov}(X, Y)$

Appendix 2E
 Deriving the Varlance of b_{2}

$\operatorname{var}\left(b_{2}\right)$	$=\operatorname{var}\left(\beta_{2}+\sum w_{i} e_{i}\right)$		[since β_{2} is a constant]
	$=\sum w_{i}^{2} \operatorname{var}\left(e_{i}\right)+\sum \sum_{i \neq j} w_{i} w_{j} \operatorname{cov}\left(e_{i}, e_{j}\right)$		[generalizing the variance rule]
	$=\sum w_{i}^{2} \operatorname{var}\left(e_{i}\right)$		[using $\left.\operatorname{cov}\left(e_{i}, e_{j}\right)=0\right]$
	$=\sigma^{2} \sum w_{i}^{2}$		[using $\left.\operatorname{var}\left(e_{i}\right)=\sigma^{2}\right]$
	$=\frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}$		

inciples of Econometrics, 3rd Edition
Slide 2-74

Appendix $2 F$

Proof of the Gauss-Markov Theorem

- Let $b_{2}^{*}=\sum k_{i} y_{i}$ be any other linear estimator of β_{2}.
- Suppose that $k_{i}=w_{i}+c_{i}$.

$$
\begin{aligned}
b_{2}^{*} & =\sum k_{i} y_{i}=\sum\left(w_{i}+c_{i}\right) y_{i}=\sum\left(w_{i}+c_{i}\right)\left(\beta_{1}+\beta_{2} x_{i}+e_{i}\right) \\
& =\sum\left(w_{i}+c_{i}\right) \beta_{1}+\sum\left(w_{i}+c_{i}\right) \beta_{2} x_{i}+\sum\left(w_{i}+c_{i}\right) e_{i} \\
& =\beta_{1} \sum w_{i}+\beta_{1} \sum c_{i}+\beta_{2} \sum w_{i} x_{i}+\beta_{2} \sum c_{i} x_{i}+\sum\left(w_{i}+c_{i}\right) e_{i} \\
& =\beta_{1} \sum c_{i}+\beta_{2}+\beta_{2} \sum c_{i} x_{i}+\sum\left(w_{i}+c_{i}\right) e_{i}
\end{aligned}
$$

\qquad

Appendlx 2F

Proof of the Gauss-fiarkov Theorem

$E\left(b_{2}^{*}\right)$	$=\beta_{1} \sum c_{i}+\beta_{2}+\beta_{2} \sum c_{i} x_{i}+\sum\left(w_{i}+c_{i}\right) E\left(e_{i}\right)$
	$=\beta_{1} \sum c_{i}+\beta_{2}+\beta_{2} \sum c_{i} x_{i}$

$\sum c_{i}=0$ and $\sum c_{i} x_{i}=0$	(2F.3)

$b_{2}^{*}=\sum k_{i} y_{i}=\beta_{2}+\sum\left(w_{i}+c_{i}\right) e_{i}$	(2F.4)

Appendix 2F
 Proof of the Gauss-Markov Theorem

$$
\begin{aligned}
& \sum c_{i} w_{i}=\sum\left[\frac{c_{i}\left(x_{i}-\bar{x}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]=\frac{1}{\sum\left(x_{i}-\bar{x}\right)^{2}} \sum c_{i} x_{i}-\frac{\bar{x}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \sum c_{i}=0 \\
& \operatorname{var}\left(b_{2}^{*}\right)=\operatorname{var}\left[\beta_{2}+\sum\left(w_{i}+c_{i}\right) e_{i}\right]=\sum\left(w_{i}+c_{i}\right)^{2} \operatorname{var}\left(e_{i}\right) \\
&=\sigma^{2} \sum\left(w_{i}+c_{i}\right)^{2}=\sigma^{2} \sum w_{i}^{2}+\sigma^{2} \sum c_{i}^{2} \\
&=\operatorname{var}\left(b_{2}\right)+\sigma^{2} \sum c_{i}^{2} \\
& \geq \operatorname{var}\left(b_{2}\right)
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

