
\qquad
\qquad

Chapter 5:
 The Multiple Regression Model

- 5.1 Model Specification and Data
- 5.2 Estimating the Parameters of the Multiple Regression Model
- 5.3 Sampling Properties of the Least Squares Estimator
- 5.4 Interval Estimation
- 5.5 Hypothesis Testing for a Single Coefficient
- 5.6 Measuring Goodness-of-Fit

5.1.2 The Econometric Model

\qquad
\qquad

Figure 5.1 The multiple regression plane

Principles of Econometrics, 3rd Edition

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5.12 The Econamatile Mifodel

$$
\begin{equation*}
S_{i}=E\left(S_{i}\right)+e_{i}=\beta_{1}+\beta_{2} P_{i}+\beta_{3} A_{i}+e_{i} \tag{5.2}
\end{equation*}
$$

- The introduction of the error term, and assumptions about its probability distribution, turn the economic model into the econometric model in (5.2) \qquad
\qquad
\qquad
\qquad

5.1.2a The General Model

\qquad
\qquad

$$
\begin{equation*}
y_{i}=\beta_{1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\cdots+\beta_{K} x_{i K}+e_{i} \tag{5.3}
\end{equation*}
$$

$$
\beta_{k}=\left.\frac{\Delta E(y)}{\Delta x_{k}}\right|_{\text {other x's held constant }}=\frac{\partial E(y)}{\partial x_{k}}
$$

\square

5.1.2b The Assumptions of the Model

\qquad
\qquad
\qquad

- Each random error has a probability distribution with zero mean. Some errors will be positive, some will be negative; over a large number of observations they will \qquad average out to zero.
\qquad
\qquad

5.1.2b The Assumptions of the Model

2. $\operatorname{var}\left(e_{i}\right)=\sigma^{2}$

- Each random error has a probability distribution with variance σ^{2}. The variance σ^{2} is an unknown parameter and it measures the uncertainty in the statistical model. It \qquad is the same for each observation, so that for no observations will the model
\qquad Errors with this property are said to be homoskedastic
\qquad

5.1.2b The Assumptions of the Model

\qquad
3. $\operatorname{cov}\left(e_{i}, e_{j}\right)=0$

- The covariance between the two random errors corresponding to any two different observations is zero. The size of an error for one observation has no bearing on the
likely size of an error for another observation. Thus, any pair of errors is uncorrelated. \qquad
\qquad

5.1.2b The Assumptions of the Model

\qquad
4. $e_{i} \sim N\left(0, \sigma^{2}\right)$

- We will sometimes further assume that the random errors have normal probability distributions. \qquad
\qquad
\qquad
\qquad

5.1.2b The Assumptions of the Model

The statistical properties of y_{i} follow from the properties of e_{i}. \qquad
\qquad
\qquad

- The expected (average) value of y_{i} depends on the values of the explanatory variables and the unknown parameters. It is equivalent to $E\left(e_{i}\right)=0$. This assumption says that the average value of y_{i} changes for each observation and is given by the regression function $E\left(y_{i}\right)=\beta_{1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}$

5.1.20 Tha Assumptans of tha modes
2. $\operatorname{var}\left(y_{i}\right)=\operatorname{var}\left(e_{i}\right)=\sigma^{2}$
- The variance of the probability distribution of y_{i} does not change with each
observation. Some observations on y_{i} are not more likely to be further from the
regression function than others.
Principles of Econometrics, 3rd Edition

5.1.2b The Assumptions of the Model

3. $\operatorname{cov}\left(y_{i}, y_{j}\right)=\operatorname{cov}\left(e_{i}, e_{j}\right)=0$

- Any two observations on the dependent variable are uncorrelated. For example, if one observation is above $E\left(y_{i}\right)$, a subsequent observation is not more or less likely to be above $E\left(y_{i}\right)$

5.1.2b The Assumptions of the Model

4. $y_{i} \sim N\left[\left(\beta_{1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}\right), \sigma^{2}\right]$

- We sometimes will assume that the values of y_{i} are normally distributed about their mean. This is equivalent to assuming that $e_{i} \sim N\left(0, \sigma^{2}\right)$.

5.1 .2 b The Assumptions of the Model
3. $\operatorname{cov}\left(y_{i}, y_{j}\right)=\operatorname{cov}\left(e_{i}, e_{j}\right)=0$
- Any two observations on the dependent variable are uncorrelated. For example, if
one observation is above $E\left(y_{i}\right)$, a subsequent observation is not more or less likely
to be above $E\left(y_{i}\right)$.
Principles of Econometrics, 3rd Edition

Principles of Economerrics, 3rd Edition
\qquad

5.1.2b The Assumptions of the Model

\qquad

Assumptions of the Multiple Regression Model
MR1. $y_{i}=\beta_{1}+\beta_{2} x_{i 2}+\cdots+\beta_{K} x_{i K}+e_{i}, i=1, \ldots, N$
MR2. $E\left(y_{i}\right)=\beta_{1}+\beta_{2} x_{i 2}+\cdots+\beta_{K} x_{i K} \Leftrightarrow E\left(e_{i}\right)=0$
MR3. $\operatorname{var}\left(y_{i}\right)=\operatorname{var}\left(e_{i}\right)=\sigma^{2}$
MR4. $\operatorname{cov}\left(y_{i}, y_{i}\right)=\operatorname{cov}\left(e_{i}, e_{j}\right)=0$
MR5. The values of each $x_{t k}$ are not random and are not exact linear functions of the other explanatory variables \qquad
MR6. $\quad y_{i} \sim N\left[\left(\beta_{1}+\beta_{2} x_{i 2}+\cdots+\beta_{K} x_{i K}\right), \sigma^{2}\right] \Leftrightarrow e_{i} \sim N\left(0, \sigma^{2}\right)$

5.2 Estimating the Parameters of the Multiple Regression Model

$y_{i}=\beta_{1}+\beta_{2} x_{12}+\beta_{3} x_{13}+e \quad$ (5.4)
\qquad
\qquad

$$
\begin{aligned}
S\left(\beta_{1}, \beta_{2}, \beta_{3}\right) & =\sum_{i=1}^{N}\left(y_{i}-E\left(y_{i}\right)\right)^{2} \\
& =\sum_{i=1}^{N}\left(y_{i}-\beta_{1}-\beta_{2} x_{i 2}-\beta_{3} x_{13}\right)^{2}
\end{aligned}
$$

\qquad
\qquad
\qquad

5.2.2 Least Squares Estimates Using Hamburger Chain Data

\qquad
\qquad
\qquad
\qquad
\qquad
5.2.2 Least Squares Estimates Using Hamburger Chain Data

$$
\begin{aligned}
& E\left(y_{i}\right)=\beta_{1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3} \\
& \hat{y}_{i}=b_{1}+b_{2} x_{i 2}+b_{3} x_{i 3} \\
& =118.91-7.908 x_{i 2}+1.863 x_{i 3} \\
& \hat{S}_{i}=118.91-7.908 P_{i}+1.863 A_{i} \\
& \widehat{\text { SALES }}=118.91-7.908 \text { PRICE }+1.863 \text { ADVERT }
\end{aligned}
$$

5.2.2 Least Squares Estimates Using Hamburger Chain Data

Suppose we are interested in predicting sales revenue for a price of \qquad
\qquad
This prediction is given by
$\hat{S}=118.91-7.908$ PRICE +1.863ADVERT \qquad
$=118.914-7.9079 \times 5.5+1.8626 \times 1.2$
$=77.656$

Principles of Econometrics, 3rd Edition

5.2.2 Least Squares Estimates Using Hamburger Chain Data

Remark: Estimated regression models describe the relationship between the economic variables for values similar to those found in the sample \qquad data. Extrapolating the results to extreme values is generally not a good idea. Predicting the value of the dependent variable for values of the \qquad
explanatory variables far from the sample values invites disaster

$$
\begin{gathered}
\sigma^{2}=\operatorname{var}\left(e_{i}\right)=E\left(e_{i}^{2}\right) \\
\hat{e}_{i}=y_{i}-\hat{y}_{i}=y_{i}-\left(b_{1}+b_{2} x_{12}+b_{3} x_{13}\right)
\end{gathered}
$$

$\hat{\sigma}^{2}=\frac{\sum_{i=1}^{N} \hat{e}_{i}^{2}}{N-K}$	(5.7)

5.2.3 Estimation of the Error Variance σ^{2} \qquad

$$
\begin{gathered}
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{75} \hat{e}_{i}^{2}}{N-K}=\frac{1718.943}{75-3}=23.874 \\
\text { SSE }=\sum_{i=1}^{N} \hat{e}_{i}^{2}=1718.943 \\
\hat{\sigma}=\sqrt{23.874}=4.8861
\end{gathered}
$$

5.3 Sampling Properties of the Least Squares Estimator

The Gauss-Markov Theorem: For the multiple \qquad regression model, if assumptions MR1-MR5 listed at the beginning of the Chapter hold, then \qquad the least squares estimators are the Best Linear Unbiased Estimators (BLUE) of the parameters. \qquad
\qquad
\qquad
5.3.1 The Varlances and Covarlances of the Least Squares Estimators

$$
\begin{aligned}
& \operatorname{var}\left(b_{2}\right)=\frac{\sigma^{2}}{\left(1-r_{23}^{2}\right) \sum_{i=1}^{N}\left(x_{i 2}-\bar{x}_{2}\right)^{2}} \\
& r_{23}=\frac{\sum\left(x_{i 2}-\bar{x}_{2}\right)\left(x_{i 3}-\bar{x}_{3}\right)}{\sqrt{\sum\left(x_{i 2}-\bar{x}_{2}\right)^{2} \sum\left(x_{i 3}-\bar{x}_{3}\right)^{2}}}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

5.3.1 The Variances and Covariances of the Least Squares Estimators

1. Larger error variances σ^{2} lead to larger variances of the least squares estimators.
2. Larger sample sizes N imply smaller variances of the least squares estimators.
3. More variation in an explanatory variable around its mean, leads to a smaller variance of the least squares estimator.
4. A larger correlation between x_{2} and x_{3} leads to a larger variance of b_{2}.

5.3.1 The Variances and Covariances of the Least Squares Estimators

- The covariance matrix for $K=3$ is

$$
\operatorname{cov}\left(b_{1}, b_{2}, b_{3}\right)=\left[\begin{array}{ccc}
\operatorname{var}\left(b_{1}\right) & \operatorname{cov}\left(b_{1}, b_{2}\right) & \operatorname{cov}\left(b_{1}, b_{3}\right) \\
\operatorname{cov}\left(b_{1}, b_{2}\right) & \operatorname{var}\left(b_{2}\right) & \operatorname{cov}\left(b_{2}, b_{3}\right) \\
\operatorname{cov}\left(b_{1}, b_{3}\right) & \operatorname{cov}\left(b_{2}, b_{3}\right) & \operatorname{var}\left(b_{3}\right)
\end{array}\right]
$$

- The estimated variances and covariances in the example are
$\overrightarrow{\operatorname{cov}\left(b_{1}, b_{2}, b_{3}\right)}=\left[\begin{array}{rrr}40.343 & -6.795 & -.7484 \\ -6.795 & 1.201 & -.0197 \\ -.7484 & -.0197 & .4668\end{array}\right] \quad$ (5.10)
5.3.1 The Varlances and Covarlances of the

Least Squares Estimators

- Therefore, we have

$$
\begin{array}{ll}
\widehat{\operatorname{var}\left(b_{1}\right)}=40.343 & \widehat{\operatorname{cov}\left(b_{1}, b_{2}\right)}=-6.795 \\
\widehat{\operatorname{var}\left(b_{2}\right)}=1.201 & \widehat{\operatorname{cov}\left(b_{1}, b_{3}\right)}=-.7484 \\
\operatorname{var}\left(b_{3}\right) & =.4668 \\
\widehat{\operatorname{cov}\left(b_{2}, b_{3}\right)}=-.0197
\end{array}
$$

5.3.1 The Variances and Covariances of the Least Squares Estimators

5.3.1 The Variances and Covariances of the Least Squares Estimators

- The standard errors are
$\operatorname{se}\left(b_{1}\right)=\widehat{\operatorname{var}\left(b_{1}\right)}=\sqrt{40.343}=6.352$
$\operatorname{se}\left(b_{2}\right)=\widehat{\operatorname{var}\left(b_{2}\right)}=\sqrt{1.201}=1.096$
$\operatorname{se}\left(b_{3}\right)=\widehat{\operatorname{var}\left(b_{3}\right)}=\sqrt{.4668}=.6832$

5.3.2 The Properties of the Least Squares Estimators Assuming Normally Distributed Errors

$$
\begin{gathered}
y_{i}=\beta_{1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\cdots+\beta_{k} x_{i k}+e_{i} \\
y_{i} \sim N\left[\left(\beta_{1}+\beta_{2} x_{i 2}+\cdots+\beta_{k} x_{i k}\right), \sigma^{2}\right] \Leftrightarrow e_{i} \sim N\left(0, \sigma^{2}\right) \\
b_{k} \sim N\left[\beta_{k}, \operatorname{var}\left(b_{k}\right)\right]
\end{gathered}
$$

5.3.2 The Properties of the Least Squares Estimators Assuming Normally Distributed Emors

$$
\frac{z=\frac{b_{k}-\beta_{k}}{\sqrt{\operatorname{var}\left(b_{k}\right)}} \sim N(0,1), \text { for } k=1,2, \ldots, K}{t=\frac{b_{k}-\beta_{k}}{\sqrt{\operatorname{var}\left(b_{k}\right)}}=\frac{b_{k}-\beta_{k}}{\operatorname{se}\left(b_{k}\right)} \sim t_{(N-K)}} \quad \text { (5.11) }
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5.4 Interval Estimation

$$
\begin{gathered}
P\left(-t_{c}<t_{(72)}<t_{c}\right)=.95 \\
P\left(-1.993 \leq \frac{b_{2}-\beta_{2}}{\operatorname{se}\left(b_{2}\right)} \leq 1.993\right)=.95 \\
\text { (5.14) }
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad

$$
P\left[b_{2}-1.993 \times \operatorname{se}\left(b_{2}\right) \leq \beta_{2} \leq b_{2}+1.993 \times \operatorname{se}\left(b_{2}\right)\right]=.95
$$

\qquad

$$
\left[b_{2}-1.993 \times \operatorname{se}\left(b_{2}\right), b_{2}+1.993 \times \operatorname{se}\left(b_{2}\right)\right]
$$

\qquad

5.4 Interval Estimation

- A 95% interval estimate for β_{2} based on our sample is given by

$$
(-10.092,-5.724)
$$

- A 95% interval estimate for β_{3} based on our sample is given by $(1.8626-1.993 \times .6832,1.8626+1.993 \times .6832)=(.501,3.224)$
- The general expression for a $100(1-\alpha) \%$ confidence interval is
$\left[b_{k}-t_{(1-\alpha / 2, N-K)} \times \operatorname{se}\left(b_{k}\right), b_{k}+t_{(1-\alpha / 2, N-K)} \times \operatorname{se}\left(b_{k}\right)\right.$

Principles of Econometrics, 3rd Edition

5.5 Hypothesis Testing for a Single Coefficient

STEP-BY-STEP PROCEDURE FOR TESTING HYPOTHESES

\qquad
2. Specify the test statistic and its distribution if the null hypothesis is true.
\qquad
4. Calculate the sample value of the test statistic and, if desired, the p -
\qquad
5. State your conclusion.
\qquad
\qquad

5.5.1 Testing the Significance of a Single Coefficient

$$
\begin{gathered}
H_{0}: \beta_{k}=0 \\
H_{1}: \beta_{k} \neq 0 \\
t=\frac{b_{k}}{\operatorname{se}\left(b_{k}\right)} \sim t_{(N-K)}
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad

5.5.1 Testing the Signiflcance of a Single Coefficient

Big Andy's Burger Barn example

The null and alternative hypotheses are: $H_{0}: \beta_{2}=0$ and $H_{1}: \beta_{2} \neq 0$

The test statistic, if the null hypothesis is true, is $t=b_{2} / \operatorname{se}\left(b_{2}\right) \sim t_{(N-K)}$

Using a 5% significance level ($\alpha=.05$), and 72 degrees of freedom, the critical values that lead to a probability of 0.025 in each tail of the distribution are $P\left(t_{(2)}>7.215\right)+P\left(t_{(2)}<-7.215\right)=2 \times\left(2.2 \times 10^{-10}\right)=.000$

5.5.1 Testing the Significance of a Single Coefficlent

4. The computed value of the t-statistic is $t=\frac{-7.908}{1.096}=-7.215$
\qquad
the p-value in this case can be found as
$P\left(t_{(21)}>7.215\right)+P\left(t_{(22)}<-7.215\right)=2 \times\left(2.2 \times 10^{-10}\right)=.000$
5. Since $-7.215<-1.993$, we reject $H_{0}: \beta_{2}=0$ and conclude that there is evidence from the data to suggest sales revenue depends on price. Using the p-value to perform the test, we reject H_{0} because $.000<.05$.

5.5.1 Testing the Significance of a Single Coefficient

- Testing whether sales revenue is related to advertising expenditure

1. $H_{0}: \beta_{3}=0$ and $H_{1}: \beta_{3} \neq 0$
2. The test statistic, if the null hypothesis is true, is $t=b_{3} / \operatorname{se}\left(b_{3}\right) \sim t_{(N-K)}$
3. Using a 5% significance level, we reject the null hypothesis if $t \geq 1.993$ or $t \leq-1.993$. In terms of the p-value, we reject H_{0} if $p \leq .05$

5.5.1 Testing the Signiflcance of a Single Coefficient

- Testing whether sales revenue is related to advertising expenditure \qquad

4. The value of the test statistic is $t=\frac{1.8626}{.6832}=2.726$;
the p-value in given by $P\left(t_{(72)}>2.726\right)+P\left(t_{(72)}<-2.726\right)=2 \times .004=.008$
5. Because $2.726>1.993$, we reject the null hypothesis; the data support the conjecture that revenue is related to advertising expenditure. Using the p-value we reject H_{0} because $.008<.05$.

5.5-2 One-Tailed Hypothesis Testing for a Single Coefficlent

- 5.5.2a Testing for elastic demand

We wish to know if

- $\beta_{2} \geq 0$: a decrease in price leads to a decrease in sales revenue (demand is price inelastic), or
- $\beta_{2}<0$: a decrease in price leads to an increase in sales revenue (demand is price elastic)

5.5.2 One-Tailed Hypothesis Testing for a Single Coefficient

1. $H_{0}: \beta_{2} \geq 0$ (demand is unit elastic or inelastic)
$H_{1}: \beta_{2}<0$ (demand is elastic) \qquad
\qquad $t=b_{2} / \operatorname{se}\left(b_{2}\right) \sim t_{(N-K)}$
\qquad
\qquad
\qquad

5.5-2 One-Talled Hypothesis Testing for a Single Coefficient

4. The value of the test statistic is $t=\frac{b_{2}}{\operatorname{se}\left(b_{2}\right)}=\frac{-7.908}{1.096}=-7.215$

The corresponding p-value is $P\left(t_{(72)}<-7.215\right)=.000$
5. Since $-7.215<-1.666$ we reject $H_{0}: \beta_{2} \geq 0$. Since $.000<.05$, the same conclusion is reached using the p-value.

5.5-2 One-Tailed Hypothesis Testing for a Single Coefficlent

5.5.2b Testing Advertising Effectiveness

1. $H_{0}: \beta_{3} \leq 1$ and $H_{1}: \beta_{3}>1$
2. To create a test statistic we assume that $H_{0}: \beta_{3}=1$ is true and use
$t=\frac{b_{3}-1}{\operatorname{se}\left(b_{3}\right)} \sim t_{(N-K)}$

At a 5% significance level, we reject H_{0} if $t \geq-1.666$ or if the $p-$ value $\leq .05$

5.5.2 One-Tailed Hypothesis Testing for a Single Coefficient

5.5.2b Testing Advertising Effectiveness

1. The value of the test statistic is $t=\frac{b_{3}-\beta_{3}}{\operatorname{se}\left(b_{3}\right)}=\frac{1.8626-1}{.6832}=1.263$
The corresponding p-value is $P\left(t_{(72)}>1.263\right)=.105$
2. Since $1.263<1.666$ we do not reject H_{0}. Since $.105>.05$, the same conclusion is
reached using the p-value.
Principles of Econometrics, 3rd Edition
5.6 Measuring Goodness-of-FIt

$$
\begin{aligned}
R^{2} & =\frac{S S R}{S S T}=\frac{\sum_{i=1}^{N}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}} \\
& =1-\frac{S S E}{S S T}=1-\frac{\sum_{i=1}^{N} \hat{e}_{i}^{2}}{\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}}
\end{aligned}
$$

5.6 Measuring Goodness-of-Fit

$$
\begin{gathered}
\hat{y}_{i}=b_{1}+b_{2} x_{i 2}+b_{3} x_{i 3}+\cdots+b_{k} x_{i K} \\
\hat{\sigma}_{y}=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}}=\sqrt{\frac{S S T}{N-1}}
\end{gathered}
$$

$$
S S T=(N-1) \hat{\sigma}_{y}^{2}
$$

5.6 Measuring Goodness-of-Fit

- For Big Andy's Burger Barn we find that \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5.6 Measuring Goodness-of-Fh

- An alternative measure of goodness-of-fit called the adjusted- R^{2}, is usually reported by regression programs and it is computed as

$$
\bar{R}^{2}=1-\frac{S S E /(N-K)}{S S T /(N-1)}
$$

5.6 Measuring Goodness-of-Fit

- If the model does not contain an intercept parameter, then the measure R^{2} given in (5.16) is no longer appropriate. The reason it is no longer appropriate is that, without an intercept term in the model,

$$
\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2} \neq \sum_{i=1}^{N}\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum_{i=1}^{N} \hat{e}_{i}^{2}
$$

$S S T \neq S S R+S S E$
\qquad

5.6.1 Reporting the Regression Results

$\widehat{S A L E S}=118.9-7.908$ PRICE +1.8626 ADVERT $\quad R^{2}=.448$
(5.17)
(se) (6.35) (1.096) (.6832) - \qquad

- From this summary we can read off the estimated effects of changes in the explanatory variables on the dependent variable and we can predict values of the \qquad dependent variable for given values of the explanatory variables. For the construction of an interval estimate we need the least squares estimate, its standard error, and a critical value from the t-distribution. \qquad
\qquad
\qquad

Caymeris		
- BLU estimator - covariance matrix of least squares estimator - critical value - error variance estimate - error variance estimator - goodness of fit - interval estimate - least squares estimates - least squares	estimation - least squares estimators - multiple regression model - one-tailed test - p-value - regression coefficients - standard errors - sum of squared errors - sum of squares of regression - testing significance	ares
Principles of Econometrics, 3rd Edition		Slide 5-52

Chapter 5 Appendices

- Appendix 5A Derivation of the least squares estimators

Appendlx 5A
Derivation of the least squares estimators

let $y_{i}^{*}=y_{i}-\bar{y}, \quad x_{i 2}^{*}=x_{i 2}-\bar{x}_{2}, \quad x_{i 3}^{*}=x_{i 3}-\bar{x}_{3}$

Appendix 5A

Derlvation of the least squares estlmators

