

INTERNSHIP REPORT

John Cooper

INTERNSHIP SEARCH PROCESS

2

- PNNL listing was on Handshake
- All applications were cold-call resume submissions
- Advice:
 - > Apply to organizations that you truly want to work for
 - Government organizations are in competition with industry
 - > Network

https://sankeymatic.com/build/

EMPLOYER ORGANIZATION

EMPLOYER ORGANIZATION

- While Pacific Northwest National Laboratory (PNNL) is a DOE laboratory, it can also receive funding for projects from other government organizations such as the Department of Defense (DOD).
- The National Security Internship Program is funded by a subdivision of the DOD called the Defense Threat Reduction Agency (DTRA).

EMPLOYER ORGANIZATION

• The internship consisted of an R&D competition between three teams, each comprised of a mix of data scientists and developers

Basic 1D CNN

2D CNN + Recurrence Plots

Autoencoder for Anomaly Detection

Compact Convolutional Transformer

Principal Component Analysis

Support Vector Machines

This Photo by Unknown Author is licensed under <u>CC BY</u>

Twin Networks

This Photo by Unknown Author is licensed under CC BY-NC

This Photo by Unknown Author is licensed under CC BY-NC.

Twin Networks

Twin Networks

	CH1	307	12	0	0	0	32	0	0	0	3	146
$N_{\rm train} = 110$	CH2	1	331	0	0	0	12	0	0	0	0	156
$N_{\rm test} = 6000$	СНЗ	5	9	329	0	0	0	9	2	90	0	56
	CIL1	0	4	0	474	0	1	0	1	0	0	20
	CIL2	35	26	17	0	280	2	0	0	5	60	75
	CL1	32	0	0	0	0	415	7	0	8	32	6
	CL2	0	4	0	0	0	0	493	0	0	0	З
FP = 2.1%	CL3	0	0	4	33	0	0	0	435	0	0	28
	СТ1	1	1	1	0	0	0	0	0	385	0	112
FN = 1.8%	СТ2	0	0	0	0	0	0	0	0	0	500	0
111 11070	NONE	21	50	69	0	67	1	0	0	13	2	777
		CH1	CH2	СНЗ	CIL1	CIL2	CL1	CL2	CL3	CT1	CT2	NONE

SOFTWARE

= knew before internship

SKILLS FOR SUCCESS

OPPORTUNITIES AT PNNL

https://www.pnnl.gov/national-security-internship https://careers.pnnl.gov/

REFERENCES

[1] N. Shah A. Hassani, S. Walton. 2021. Escaping the Big Data Paradigm with Compact Transformers. https://arxiv.org/abs/2104.05704

[2] S. Cho A. Jinwon. 2015. Variational Autoencoder Based Anomaly Detection Using Reconstruction Probability. http://dm.snu.ac.kr/static/docs/TR/ SNUDM-TR-2015-03.pdf

[3] Defense Threat Reduction Agency. 2022. History. https://www.dtra.mil/About/ DTRA-History/

[4] R. Salakhutdinov G. Koch, R. Zemel. 2015. Siamese Neural Networks for One-shot Image Recognition. <u>https://www.cs.cmu.edu/~rsalakhu/oapers/oneshot1.adf</u>

[5] Y. Gavet J. Debayle, N. Hatami. 2018. Classification of Time-Series Images Using Deep Convolutional Neural Networks. https://arxiv.org/abs/1710.00886

[6] Pacific Northwest National Laboratory. 2022. Computing and Analytics Division. https://www.pnnl.gov/computing-and-analytics-research

[7] Pacific Northwest National Laboratory. 2022. DOE Capabilities. https://www.pnnl.gov/doe-capabilities

[8] Pacific Northwest National Laboratory. 2022. National Security Internship. https://www.pnnl.gov/national-security-internship

[9] Pacific Northwest National Laboratory. 2022. Sponsors. https://www.pnnl.gov/ sponsors

[10] B. Ince B. Hauck K. O'Donnell R. Dereje C. Harden V. McHugh M. Wade P. Riley, S. Deshpande. 2021. Random Forest and Long Short-Term Memory Based Machine Learning Madels for Classification of Ion Mobility Spectrometry Spectra. https: //spie.org/Publications/Proceedings/Paper/10.1117/12.25852975SO=1

[11] O. Abdelijaber O. Avci M. Gabbouj S. Kiranyaz, T. Ince. 2019. 1-D Convolutional Neural Networks for Signal Processing Applications. https://ieeexplore.ieee.org/ document/8682194

[12] B.C. Song S.H Lee. 2021. Vision Transformers for Small-Size Datasets. https: //arxiv.org/abs/2112.13492

[13] W. Bi N. Sebe B. Lepri M. De Nadai Y. Liu, E. Sangineto. 2021. Efficient Training of Visual Transformers with Small Datasets. https://arxiv.org/abs/2106.03746

THANK YOU

John Cooper